Articles | Volume 9, issue 1
https://doi.org/10.5194/tc-9-255-2015
https://doi.org/10.5194/tc-9-255-2015
Research article
 | 
09 Feb 2015
Research article |  | 09 Feb 2015

Regional melt-pond fraction and albedo of thin Arctic first-year drift ice in late summer

D. V. Divine, M. A. Granskog, S. R. Hudson, C. A. Pedersen, T. I. Karlsen, S. A. Divina, A. H. H. Renner, and S. Gerland

Related authors

Atmospheric composition in the European Arctic and 30 years of the Zeppelin Observatory, Ny-Ålesund
Stephen M. Platt, Øystein Hov, Torunn Berg, Knut Breivik, Sabine Eckhardt, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Markus Fiebig, Rebecca Fisher, Georg Hansen, Hans-Christen Hansson, Jost Heintzenberg, Ove Hermansen, Dominic Heslin-Rees, Kim Holmén, Stephen Hudson, Roland Kallenborn, Radovan Krejci, Terje Krognes, Steinar Larssen, David Lowry, Cathrine Lund Myhre, Chris Lunder, Euan Nisbet, Pernilla B. Nizzetto, Ki-Tae Park, Christina A. Pedersen, Katrine Aspmo Pfaffhuber, Thomas Röckmann, Norbert Schmidbauer, Sverre Solberg, Andreas Stohl, Johan Ström, Tove Svendby, Peter Tunved, Kjersti Tørnkvist, Carina van der Veen, Stergios Vratolis, Young Jun Yoon, Karl Espen Yttri, Paul Zieger, Wenche Aas, and Kjetil Tørseth
Atmos. Chem. Phys., 22, 3321–3369, https://doi.org/10.5194/acp-22-3321-2022,https://doi.org/10.5194/acp-22-3321-2022, 2022
Short summary
CO2 flux over young and snow-covered Arctic pack ice in winter and spring
Daiki Nomura, Mats A. Granskog, Agneta Fransson, Melissa Chierici, Anna Silyakova, Kay I. Ohshima, Lana Cohen, Bruno Delille, Stephen R. Hudson, and Gerhard S. Dieckmann
Biogeosciences, 15, 3331–3343, https://doi.org/10.5194/bg-15-3331-2018,https://doi.org/10.5194/bg-15-3331-2018, 2018
Do contemporary (1980–2015) emissions determine the elemental carbon deposition trend at Holtedahlfonna glacier, Svalbard?
Meri M. Ruppel, Joana Soares, Jean-Charles Gallet, Elisabeth Isaksson, Tõnu Martma, Jonas Svensson, Jack Kohler, Christina A. Pedersen, Sirkku Manninen, Atte Korhola, and Johan Ström
Atmos. Chem. Phys., 17, 12779–12795, https://doi.org/10.5194/acp-17-12779-2017,https://doi.org/10.5194/acp-17-12779-2017, 2017
Short summary
Modelling radiative transfer through ponded first-year Arctic sea ice with a plane-parallel model
Torbjørn Taskjelle, Stephen R. Hudson, Mats A. Granskog, and Børge Hamre
The Cryosphere, 11, 2137–2148, https://doi.org/10.5194/tc-11-2137-2017,https://doi.org/10.5194/tc-11-2137-2017, 2017
Unmanned aerial system nadir reflectance and MODIS nadir BRDF-adjusted surface reflectances intercompared over Greenland
John Faulkner Burkhart, Arve Kylling, Crystal B. Schaaf, Zhuosen Wang, Wiley Bogren, Rune Storvold, Stian Solbø, Christina A. Pedersen, and Sebastian Gerland
The Cryosphere, 11, 1575–1589, https://doi.org/10.5194/tc-11-1575-2017,https://doi.org/10.5194/tc-11-1575-2017, 2017
Short summary

Related subject area

Sea Ice
A quasi-objective single-buoy approach for understanding Lagrangian coherent structures and sea ice dynamics
Nikolas O. Aksamit, Randall K. Scharien, Jennifer K. Hutchings, and Jennifer V. Lukovich
The Cryosphere, 17, 1545–1566, https://doi.org/10.5194/tc-17-1545-2023,https://doi.org/10.5194/tc-17-1545-2023, 2023
Short summary
Linking scales of sea ice surface topography: evaluation of ICESat-2 measurements with coincident helicopter laser scanning during MOSAiC
Robert Ricker, Steven Fons, Arttu Jutila, Nils Hutter, Kyle Duncan, Sinead L. Farrell, Nathan T. Kurtz, and Renée Mie Fredensborg Hansen
The Cryosphere, 17, 1411–1429, https://doi.org/10.5194/tc-17-1411-2023,https://doi.org/10.5194/tc-17-1411-2023, 2023
Short summary
Analysis of microseismicity in sea ice with deep learning and Bayesian inference: application to high-resolution thickness monitoring
Ludovic Moreau, Léonard Seydoux, Jérôme Weiss, and Michel Campillo
The Cryosphere, 17, 1327–1341, https://doi.org/10.5194/tc-17-1327-2023,https://doi.org/10.5194/tc-17-1327-2023, 2023
Short summary
A collection of wet beam models for wave–ice interaction
Sasan Tavakoli and Alexander V. Babanin
The Cryosphere, 17, 939–958, https://doi.org/10.5194/tc-17-939-2023,https://doi.org/10.5194/tc-17-939-2023, 2023
Short summary
First results of Antarctic sea ice type retrieval from active and passive microwave remote sensing data
Christian Melsheimer, Gunnar Spreen, Yufang Ye, and Mohammed Shokr
The Cryosphere, 17, 105–126, https://doi.org/10.5194/tc-17-105-2023,https://doi.org/10.5194/tc-17-105-2023, 2023
Short summary

Cited articles

Björk, G., Stranne, C., and Borenäs, K.: The Sensitivity of the Arctic Ocean Sea Ice Thickness and Its Dependence on the Surface Albedo Parameterization, J. Climate, 26, 1355–1370, https://doi.org/10.1175/JCLI-D-12-00085.1, 2013.
Castro-Morales, K., Kauker, F., Losch, M., Hendricks, S., Riemann-Campe, K., and Gerdes, R.: Sensitivity of simulated Arctic sea ice to realistic ice thickness distributions and snow parameterizations, J. Geophys. Res.-Oceans, 119, 559–571, https://doi.org/10.1002/2013JC009342, 2014.
Conover, W.: Practical nonparametric statistics, Wiley series in probability and statistics, Wiley, New York, USA, 3rd edn., 584 pp., 1999.
Curry, J. A., Schramm, J. L., and Ebert, E. E.: Sea Ice-Albedo Climate Feedback Mechanism., J. Climate, 8, 240–247, https://doi.org/10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2, 1995.
Curry, J. A., Schramm, J. L., Perovich, D. K., and Pinto, J. O.: Applications of SHEBA/FIRE data to evaluation of snow/ice albedo parameterizations, J. Geophys. Res.-Atmos., 106, 15345–15355, https://doi.org/10.1029/2000JD900311, 2001.
Download
Short summary
Regional melt pond coverage and albedo of thin (70-90cm) first year Arctic sea ice in advanced stage of melt was estimated from a combination of low-altitude imagery and in situ measurements north of Svalbard in summer 2012. The study revealed a homogeneous melt across the study area with a typical pond fraction of 0.29 and sea-ice albedo of 0.44. A decrease in pond fraction was, however, observed in the 30km marginal ice zone, occurring in parallel with an increase in open-water coverage.