Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 9, issue 1
The Cryosphere, 9, 37–52, 2015
https://doi.org/10.5194/tc-9-37-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 9, 37–52, 2015
https://doi.org/10.5194/tc-9-37-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 06 Jan 2015

Research article | 06 Jan 2015

The impact of snow depth, snow density and ice density on sea ice thickness retrieval from satellite radar altimetry: results from the ESA-CCI Sea Ice ECV Project Round Robin Exercise

S. Kern et al.

Related authors

Satellite Passive Microwave Sea-Ice Concentration Data Set Intercomparison for Arctic Summer Conditions
Stefan Kern, Thomas Lavergne, Dirk Notz, Leif Toudal Pedersen, and Rasmus Tage Tonboe
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-35,https://doi.org/10.5194/tc-2020-35, 2020
Revised manuscript under review for TC
Short summary
Satellite passive microwave sea-ice concentration data set intercomparison: closed ice and ship-based observations
Stefan Kern, Thomas Lavergne, Dirk Notz, Leif Toudal Pedersen, Rasmus Tage Tonboe, Roberto Saldo, and Atle MacDonald Sørensen
The Cryosphere, 13, 3261–3307, https://doi.org/10.5194/tc-13-3261-2019,https://doi.org/10.5194/tc-13-3261-2019, 2019
Short summary
Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records
Thomas Lavergne, Atle Macdonald Sørensen, Stefan Kern, Rasmus Tonboe, Dirk Notz, Signe Aaboe, Louisa Bell, Gorm Dybkjær, Steinar Eastwood, Carolina Gabarro, Georg Heygster, Mari Anne Killie, Matilde Brandt Kreiner, John Lavelle, Roberto Saldo, Stein Sandven, and Leif Toudal Pedersen
The Cryosphere, 13, 49–78, https://doi.org/10.5194/tc-13-49-2019,https://doi.org/10.5194/tc-13-49-2019, 2019
Short summary
Empirical parametrization of Envisat freeboard retrieval of Arctic and Antarctic sea ice based on CryoSat-2: progress in the ESA Climate Change Initiative
Stephan Paul, Stefan Hendricks, Robert Ricker, Stefan Kern, and Eero Rinne
The Cryosphere, 12, 2437–2460, https://doi.org/10.5194/tc-12-2437-2018,https://doi.org/10.5194/tc-12-2437-2018, 2018
Short summary
The EUMETSAT sea ice concentration climate data record
Rasmus T. Tonboe, Steinar Eastwood, Thomas Lavergne, Atle M. Sørensen, Nicholas Rathmann, Gorm Dybkjær, Leif Toudal Pedersen, Jacob L. Høyer, and Stefan Kern
The Cryosphere, 10, 2275–2290, https://doi.org/10.5194/tc-10-2275-2016,https://doi.org/10.5194/tc-10-2275-2016, 2016
Short summary

Related subject area

Sea Ice
An enhancement to sea ice motion and age products at the National Snow and Ice Data Center (NSIDC)
Mark A. Tschudi, Walter N. Meier, and J. Scott Stewart
The Cryosphere, 14, 1519–1536, https://doi.org/10.5194/tc-14-1519-2020,https://doi.org/10.5194/tc-14-1519-2020, 2020
Short summary
Accuracy and inter-analyst agreement of visually estimated sea ice concentrations in Canadian Ice Service ice charts using single-polarization RADARSAT-2
Angela Cheng, Barbara Casati, Adrienne Tivy, Tom Zagon, Jean-François Lemieux, and L. Bruno Tremblay
The Cryosphere, 14, 1289–1310, https://doi.org/10.5194/tc-14-1289-2020,https://doi.org/10.5194/tc-14-1289-2020, 2020
Short summary
Prediction of monthly Arctic sea ice concentrations using satellite and reanalysis data based on convolutional neural networks
Young Jun Kim, Hyun-Cheol Kim, Daehyeon Han, Sanggyun Lee, and Jungho Im
The Cryosphere, 14, 1083–1104, https://doi.org/10.5194/tc-14-1083-2020,https://doi.org/10.5194/tc-14-1083-2020, 2020
Short summary
Variability scaling and consistency in airborne and satellite altimetry measurements of Arctic sea ice
Shiming Xu, Lu Zhou, and Bin Wang
The Cryosphere, 14, 751–767, https://doi.org/10.5194/tc-14-751-2020,https://doi.org/10.5194/tc-14-751-2020, 2020
Short summary
Sea ice volume variability and water temperature in the Greenland Sea
Valeria Selyuzhenok, Igor Bashmachnikov, Robert Ricker, Anna Vesman, and Leonid Bobylev
The Cryosphere, 14, 477–495, https://doi.org/10.5194/tc-14-477-2020,https://doi.org/10.5194/tc-14-477-2020, 2020
Short summary

Cited articles

Ackley, S. F., Hibler III, W. D., Kugzruk, F., Kovacs, A., and Weeks, W. F.: Thickness and roughness variations of Arctic multiyear sea ice, AIDJEX Bulletin, 25, 75–95, 1974.
Alexandrov, V., Sandven, S., Wahlin, J., and Johannessen, O. M.: The relation between sea ice thickness and freeboard in the Arctic, The Cryosphere, 4, 373–380, https://doi.org/10.5194/tc-4-373-2010, 2010.
Armitage, T. W. K. and Davidson, M. W. J.: Using the interferometric capabilities of the ESA Cryosat-2 mission to improve the accuracy of sea ice freeboard retrievals, Trans. Geosci. Rem. Sens., 51, 529–536, https://doi.org/10.1109/TGRS.2013.2242082, 2014.
Bröhan, D. and Kaleschke L.: A nine-year climatology of Arctic sea ice lead orientation and frequency from AMSR-E, Remote Sens., 6, 1451–1475, https://doi.org/10.3390/rs6021451, 2014.
Brucker, L. and Markus, T.: Arctic-scale assessment of satellite passive microwave derived snow depth on sea ice using operational icebridge airborne data, J. Geophys. Res.-Oceans, 118, 2892–2905, https://doi.org/10.1002/jgrc.20228, 2013.
Publications Copernicus
Download
Short summary
Snow depth and ice density are equally important parameters for sea ice thickness retrieval from radar altimetry of Arctic sea ice. Development of a new snow depth data set is mandatory as the Warren snow depth climatology does not represent the actual snow depth distribution. An optimal choice of ice density can be realized by including ice type and degree of deformation. Retrieval and validation enhancement requires more contemporary ice freeboard, thickness, and density and snow depth data.
Snow depth and ice density are equally important parameters for sea ice thickness retrieval from...
Citation