Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 9, issue 2
The Cryosphere, 9, 587–601, 2015
https://doi.org/10.5194/tc-9-587-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 9, 587–601, 2015
https://doi.org/10.5194/tc-9-587-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 27 Mar 2015

Research article | 27 Mar 2015

Verification of analysed and forecasted winter precipitation in complex terrain

M. Schirmer1,* and B. Jamieson1 M. Schirmer and B. Jamieson
  • 1Department of Civil Engineering, University of Calgary, Calgary, AB, Canada
  • *now at: Centre for Hydrology, University of Saskatchewan, Saskatoon, SK, Canada

Abstract. Numerical Weather Prediction (NWP) models are rarely verified for mountainous regions during the winter season, although avalanche forecasters and other decision makers frequently rely on NWP models. Winter precipitation from two NWP models (GEM-LAM and GEM15) and from a precipitation analysis system (CaPA) was verified at approximately 100 stations in the mountains of western Canada and the north-western US. Ultrasonic snow depth sensors and snow pillows were used to observe daily precipitation amounts. For the first time, a detailed objective validation scheme was performed highlighting many aspects of forecast quality. Overall, the models underestimated precipitation amounts, although low precipitation categories were overestimated. The finer resolution model GEM-LAM performed best in all analysed aspects of model performance, while the precipitation analysis system performed worst. An analysis of the economic value of large precipitation categories showed that only mitigation measures with low cost–loss ratios (i.e. measures that can be performed often) will benefit from these NWP models. This means that measures with large associated costs relative to anticipated losses when the measure is not performed should not or not primarily depend on forecasted precipitation.

Publications Copernicus
Download
Short summary
Numerical Weather Prediction (NWP) models are rarely verified for mountainous regions during the winter season, although avalanche forecasters and other decision makers frequently rely on NWP models. We verified two NWP models (GEM-LAM and GEM15) and a precipitation analysis system (CaPA) at approximately 100 stations in the mountains of western Canada and northwestern USA. Ultrasonic snow depth sensors and snow pillows were used to observe daily precipitation amounts.
Numerical Weather Prediction (NWP) models are rarely verified for mountainous regions during the...
Citation