Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 9, issue 2
The Cryosphere, 9, 663–673, 2015
https://doi.org/10.5194/tc-9-663-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 9, 663–673, 2015
https://doi.org/10.5194/tc-9-663-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 09 Apr 2015

Research article | 09 Apr 2015

On producing sea ice deformation data sets from SAR-derived sea ice motion

S. Bouillon and P. Rampal
Related authors  
On the multi-fractal scaling properties of sea ice deformation
Pierre Rampal, Véronique Dansereau, Einar Olason, Sylvain Bouillon, Timothy Williams, Anton Korosov, and Abdoulaye Samaké
The Cryosphere, 13, 2457–2474, https://doi.org/10.5194/tc-13-2457-2019,https://doi.org/10.5194/tc-13-2457-2019, 2019
Short summary
Wave–ice interactions in the neXtSIM sea-ice model
Timothy D. Williams, Pierre Rampal, and Sylvain Bouillon
The Cryosphere, 11, 2117–2135, https://doi.org/10.5194/tc-11-2117-2017,https://doi.org/10.5194/tc-11-2117-2017, 2017
Short summary
Arctic sea-ice diffusion from observed and simulated Lagrangian trajectories
Pierre Rampal, Sylvain Bouillon, Jon Bergh, and Einar Ólason
The Cryosphere, 10, 1513–1527, https://doi.org/10.5194/tc-10-1513-2016,https://doi.org/10.5194/tc-10-1513-2016, 2016
Short summary
neXtSIM: a new Lagrangian sea ice model
Pierre Rampal, Sylvain Bouillon, Einar Ólason, and Mathieu Morlighem
The Cryosphere, 10, 1055–1073, https://doi.org/10.5194/tc-10-1055-2016,https://doi.org/10.5194/tc-10-1055-2016, 2016
Short summary
Error assessment of satellite-derived lead fraction in the Arctic
Natalia Ivanova, Pierre Rampal, and Sylvain Bouillon
The Cryosphere, 10, 585–595, https://doi.org/10.5194/tc-10-585-2016,https://doi.org/10.5194/tc-10-585-2016, 2016
Short summary
Related subject area  
Sea Ice
Estimating early-winter Antarctic sea ice thickness from deformed ice morphology
M. Jeffrey Mei, Ted Maksym, Blake Weissling, and Hanumant Singh
The Cryosphere, 13, 2915–2934, https://doi.org/10.5194/tc-13-2915-2019,https://doi.org/10.5194/tc-13-2915-2019, 2019
Short summary
On the multi-fractal scaling properties of sea ice deformation
Pierre Rampal, Véronique Dansereau, Einar Olason, Sylvain Bouillon, Timothy Williams, Anton Korosov, and Abdoulaye Samaké
The Cryosphere, 13, 2457–2474, https://doi.org/10.5194/tc-13-2457-2019,https://doi.org/10.5194/tc-13-2457-2019, 2019
Short summary
Sea ice export through the Fram Strait derived from a combined model and satellite data set
Chao Min, Longjiang Mu, Qinghua Yang, Robert Ricker, Qian Shi, Bo Han, Renhao Wu, and Jiping Liu
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-157,https://doi.org/10.5194/tc-2019-157, 2019
Revised manuscript accepted for TC
Short summary
Brief communication: Pancake ice floe size distribution during the winter expansion of the Antarctic marginal ice zone
Alberto Alberello, Miguel Onorato, Luke Bennetts, Marcello Vichi, Clare Eayrs, Keith MacHutchon, and Alessandro Toffoli
The Cryosphere, 13, 41–48, https://doi.org/10.5194/tc-13-41-2019,https://doi.org/10.5194/tc-13-41-2019, 2019
Short summary
What historical landfast ice observations tell us about projected ice conditions in Arctic archipelagoes and marginal seas under anthropogenic forcing
Frédéric Laliberté, Stephen E. L. Howell, Jean-François Lemieux, Frédéric Dupont, and Ji Lei
The Cryosphere, 12, 3577–3588, https://doi.org/10.5194/tc-12-3577-2018,https://doi.org/10.5194/tc-12-3577-2018, 2018
Short summary
Cited articles  
Bremner, D., Hurtado, F., Ramaswami, S., and Sacristán, V.: Small convex quadrangulations of point sets, in: Algorithms and Computation, edited by: Eades, P. and Takaoka, T.: of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2223, 623–635, https://doi.org/10.1007/3-540-45678-3_53, 2001.
Fily, M. and Rothrock, D.: Opening and closing of sea ice leads: digital measurements from synthetic aperture radar, J. Geophys. Res., 95, 789–796, 1990.
Girard, L., Weiss, J., Molines, J.-M., Barnier, B., and Bouillon, S.: Evaluation of high-resolution sea ice models on the basis of statistical and scaling properties of Arctic sea ice drift and deformation, J. Geophys. Res., 114, 2156–2202, 2009.
Girard, L., Bouillon, S., Weiss, J., Amitrano, D., Fichefet, T., and Legat, V.: A new modelling framework for sea ice mechanics based on elasto-brittle rheology, Ann. Glaciol., 52, 123–132, 2011.
Herman, A. and Glowacki, O.: Variability of sea ice deformation rates in the Arctic and their relationship with basin-scale wind forcing, The Cryosphere, 6, 1553–1559, https://doi.org/10.5194/tc-6-1553-2012, 2012.
Publications Copernicus
Download
Short summary
We present a new method to compute sea ice deformation fields from satellite-derived motion. The method particularly reduces the artificial noise that arises along discontinuities in the sea ice motion field. We estimate that this artificial noise may cause an overestimation of about 60% of sea ice opening and closing. The constant overestimation of the opening and closing could have led in previous studies to a large overestimation of freezing in leads, salt rejection and sea ice ridging.
We present a new method to compute sea ice deformation fields from satellite-derived motion. The...
Citation