Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 9, issue 2
The Cryosphere, 9, 663–673, 2015
https://doi.org/10.5194/tc-9-663-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 9, 663–673, 2015
https://doi.org/10.5194/tc-9-663-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 09 Apr 2015

Research article | 09 Apr 2015

On producing sea ice deformation data sets from SAR-derived sea ice motion

S. Bouillon and P. Rampal

Related authors

On the multi-fractal scaling properties of sea ice deformation
Pierre Rampal, Véronique Dansereau, Einar Olason, Sylvain Bouillon, Timothy Williams, Anton Korosov, and Abdoulaye Samaké
The Cryosphere, 13, 2457–2474, https://doi.org/10.5194/tc-13-2457-2019,https://doi.org/10.5194/tc-13-2457-2019, 2019
Short summary
Wave–ice interactions in the neXtSIM sea-ice model
Timothy D. Williams, Pierre Rampal, and Sylvain Bouillon
The Cryosphere, 11, 2117–2135, https://doi.org/10.5194/tc-11-2117-2017,https://doi.org/10.5194/tc-11-2117-2017, 2017
Short summary
Arctic sea-ice diffusion from observed and simulated Lagrangian trajectories
Pierre Rampal, Sylvain Bouillon, Jon Bergh, and Einar Ólason
The Cryosphere, 10, 1513–1527, https://doi.org/10.5194/tc-10-1513-2016,https://doi.org/10.5194/tc-10-1513-2016, 2016
Short summary
neXtSIM: a new Lagrangian sea ice model
Pierre Rampal, Sylvain Bouillon, Einar Ólason, and Mathieu Morlighem
The Cryosphere, 10, 1055–1073, https://doi.org/10.5194/tc-10-1055-2016,https://doi.org/10.5194/tc-10-1055-2016, 2016
Short summary
Error assessment of satellite-derived lead fraction in the Arctic
Natalia Ivanova, Pierre Rampal, and Sylvain Bouillon
The Cryosphere, 10, 585–595, https://doi.org/10.5194/tc-10-585-2016,https://doi.org/10.5194/tc-10-585-2016, 2016
Short summary

Related subject area

Sea Ice
An enhancement to sea ice motion and age products at the National Snow and Ice Data Center (NSIDC)
Mark A. Tschudi, Walter N. Meier, and J. Scott Stewart
The Cryosphere, 14, 1519–1536, https://doi.org/10.5194/tc-14-1519-2020,https://doi.org/10.5194/tc-14-1519-2020, 2020
Short summary
Accuracy and inter-analyst agreement of visually estimated sea ice concentrations in Canadian Ice Service ice charts using single-polarization RADARSAT-2
Angela Cheng, Barbara Casati, Adrienne Tivy, Tom Zagon, Jean-François Lemieux, and L. Bruno Tremblay
The Cryosphere, 14, 1289–1310, https://doi.org/10.5194/tc-14-1289-2020,https://doi.org/10.5194/tc-14-1289-2020, 2020
Short summary
Prediction of monthly Arctic sea ice concentrations using satellite and reanalysis data based on convolutional neural networks
Young Jun Kim, Hyun-Cheol Kim, Daehyeon Han, Sanggyun Lee, and Jungho Im
The Cryosphere, 14, 1083–1104, https://doi.org/10.5194/tc-14-1083-2020,https://doi.org/10.5194/tc-14-1083-2020, 2020
Short summary
Variability scaling and consistency in airborne and satellite altimetry measurements of Arctic sea ice
Shiming Xu, Lu Zhou, and Bin Wang
The Cryosphere, 14, 751–767, https://doi.org/10.5194/tc-14-751-2020,https://doi.org/10.5194/tc-14-751-2020, 2020
Short summary
Sea ice volume variability and water temperature in the Greenland Sea
Valeria Selyuzhenok, Igor Bashmachnikov, Robert Ricker, Anna Vesman, and Leonid Bobylev
The Cryosphere, 14, 477–495, https://doi.org/10.5194/tc-14-477-2020,https://doi.org/10.5194/tc-14-477-2020, 2020
Short summary

Cited articles

Bremner, D., Hurtado, F., Ramaswami, S., and Sacristán, V.: Small convex quadrangulations of point sets, in: Algorithms and Computation, edited by: Eades, P. and Takaoka, T.: of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2223, 623–635, https://doi.org/10.1007/3-540-45678-3_53, 2001.
Fily, M. and Rothrock, D.: Opening and closing of sea ice leads: digital measurements from synthetic aperture radar, J. Geophys. Res., 95, 789–796, 1990.
Girard, L., Weiss, J., Molines, J.-M., Barnier, B., and Bouillon, S.: Evaluation of high-resolution sea ice models on the basis of statistical and scaling properties of Arctic sea ice drift and deformation, J. Geophys. Res., 114, 2156–2202, 2009.
Girard, L., Bouillon, S., Weiss, J., Amitrano, D., Fichefet, T., and Legat, V.: A new modelling framework for sea ice mechanics based on elasto-brittle rheology, Ann. Glaciol., 52, 123–132, 2011.
Herman, A. and Glowacki, O.: Variability of sea ice deformation rates in the Arctic and their relationship with basin-scale wind forcing, The Cryosphere, 6, 1553–1559, https://doi.org/10.5194/tc-6-1553-2012, 2012.
Publications Copernicus
Download
Short summary
We present a new method to compute sea ice deformation fields from satellite-derived motion. The method particularly reduces the artificial noise that arises along discontinuities in the sea ice motion field. We estimate that this artificial noise may cause an overestimation of about 60% of sea ice opening and closing. The constant overestimation of the opening and closing could have led in previous studies to a large overestimation of freezing in leads, salt rejection and sea ice ridging.
We present a new method to compute sea ice deformation fields from satellite-derived motion. The...
Citation