Journal metrics

Journal metrics

  • IF value: 4.524 IF 4.524
  • IF 5-year value: 5.558 IF 5-year 5.558
  • CiteScore value: 4.84 CiteScore 4.84
  • SNIP value: 1.425 SNIP 1.425
  • SJR value: 3.034 SJR 3.034
  • IPP value: 4.65 IPP 4.65
  • h5-index value: 52 h5-index 52
  • Scimago H index value: 55 Scimago H index 55
Volume 9, issue 3 | Copyright
The Cryosphere, 9, 971-988, 2015
https://doi.org/10.5194/tc-9-971-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 11 May 2015

Research article | 11 May 2015

Numerical simulation of extreme snowmelt observed at the SIGMA-A site, northwest Greenland, during summer 2012

M. Niwano et al.
Viewed
Total article views: 1,483 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
925 481 77 1,483 73 84
  • HTML: 925
  • PDF: 481
  • XML: 77
  • Total: 1,483
  • BibTeX: 73
  • EndNote: 84
Views and downloads (calculated since 20 Jan 2015)
Cumulative views and downloads (calculated since 20 Jan 2015)
Cited
Saved (final revised paper)
Saved (discussion paper)
Discussed (final revised paper)
No discussed metrics found.
Discussed (discussion paper)
No discussed metrics found.
Latest update: 21 Jul 2018
Publications Copernicus
Download
Short summary
A physical snowpack model SMAP and in situ meteorological and snow data obtained at site SIGMA-A on the northwest Greenland ice sheet are used to assess surface energy balance during the extreme near-surface snowmelt event around 12 July 2012. We determined that the main factor for the melt event observed at the SIGMA-A site was low-level clouds accompanied by a significant temperature increase, which induced surface heating via cloud radiative forcing in the polar region.
A physical snowpack model SMAP and in situ meteorological and snow data obtained at site SIGMA-A...
Citation
Share