Volume 6, 2012

Volume 6, 2012

04 Jan 2012
Hydrologic controls on coastal suspended sediment plumes around the Greenland Ice Sheet
V. W. Chu, L. C. Smith, A. K. Rennermalm, R. R. Forster, and J. E. Box
The Cryosphere, 6, 1–19, https://doi.org/10.5194/tc-6-1-2012,https://doi.org/10.5194/tc-6-1-2012, 2012
06 Jan 2012
Reformulating the full-Stokes ice sheet model for a more efficient computational solution
J. K. Dukowicz
The Cryosphere, 6, 21–34, https://doi.org/10.5194/tc-6-21-2012,https://doi.org/10.5194/tc-6-21-2012, 2012
10 Jan 2012
The impact of a seasonally ice free Arctic Ocean on the temperature, precipitation and surface mass balance of Svalbard
J. J. Day, J. L. Bamber, P. J. Valdes, and J. Kohler
The Cryosphere, 6, 35–50, https://doi.org/10.5194/tc-6-35-2012,https://doi.org/10.5194/tc-6-35-2012, 2012
13 Jan 2012
Comparison of MODIS-derived land surface temperatures with ground surface and air temperature measurements in continuous permafrost terrain
S. Hachem, C. R. Duguay, and M. Allard
The Cryosphere, 6, 51–69, https://doi.org/10.5194/tc-6-51-2012,https://doi.org/10.5194/tc-6-51-2012, 2012
17 Jan 2012
A minimal model for reconstructing interannual mass balance variability of glaciers in the European Alps
B. Marzeion, M. Hofer, A. H. Jarosch, G. Kaser, and T. Mölg
The Cryosphere, 6, 71–84, https://doi.org/10.5194/tc-6-71-2012,https://doi.org/10.5194/tc-6-71-2012, 2012
19 Jan 2012
Geochemical characterization of supraglacial debris via in situ and optical remote sensing methods: a case study in Khumbu Himalaya, Nepal
K. A. Casey, A. Kääb, and D. I. Benn
The Cryosphere, 6, 85–100, https://doi.org/10.5194/tc-6-85-2012,https://doi.org/10.5194/tc-6-85-2012, 2012
20 Jan 2012
A three-dimensional full Stokes model of the grounding line dynamics: effect of a pinning point beneath the ice shelf
L. Favier, O. Gagliardini, G. Durand, and T. Zwinger
The Cryosphere, 6, 101–112, https://doi.org/10.5194/tc-6-101-2012,https://doi.org/10.5194/tc-6-101-2012, 2012
24 Jan 2012
Basal crevasses in Larsen C Ice Shelf and implications for their global abundance
A. Luckman, D. Jansen, B. Kulessa, E. C. King, P. Sammonds, and D. I. Benn
The Cryosphere, 6, 113–123, https://doi.org/10.5194/tc-6-113-2012,https://doi.org/10.5194/tc-6-113-2012, 2012
26 Jan 2012
A statistical approach to modelling permafrost distribution in the European Alps or similar mountain ranges
L. Boeckli, A. Brenning, S. Gruber, and J. Noetzli
The Cryosphere, 6, 125–140, https://doi.org/10.5194/tc-6-125-2012,https://doi.org/10.5194/tc-6-125-2012, 2012
27 Jan 2012
Corrigendum to "The impact of a seasonally ice free Arctic Ocean on the temperature, precipitation and surface mass balance of Svalbard" published in The Cryosphere, 6, 35–50, 2012
J. J. Day, J. L. Bamber, P. J. Valdes, and J. Kohler
The Cryosphere, 6, 141–141, https://doi.org/10.5194/tc-6-141-2012,https://doi.org/10.5194/tc-6-141-2012, 2012
02 Feb 2012
Influence of sea ice lead-width distribution on turbulent heat transfer between the ocean and the atmosphere
S. Marcq and J. Weiss
The Cryosphere, 6, 143–156, https://doi.org/10.5194/tc-6-143-2012,https://doi.org/10.5194/tc-6-143-2012, 2012
08 Feb 2012
Cornice dynamics and meteorological control at Gruvefjellet, Central Svalbard
S. Vogel, M. Eckerstorfer, and H. H. Christiansen
The Cryosphere, 6, 157–171, https://doi.org/10.5194/tc-6-157-2012,https://doi.org/10.5194/tc-6-157-2012, 2012
09 Feb 2012
Laboratory study of frazil ice accumulation under wave conditions
S. De la Rosa and S. Maus
The Cryosphere, 6, 173–191, https://doi.org/10.5194/tc-6-173-2012,https://doi.org/10.5194/tc-6-173-2012, 2012
13 Feb 2012
How reversible is sea ice loss?
J. K. Ridley, J. A. Lowe, and H. T. Hewitt
The Cryosphere, 6, 193–198, https://doi.org/10.5194/tc-6-193-2012,https://doi.org/10.5194/tc-6-193-2012, 2012
13 Feb 2012
Large surface meltwater discharge from the Kangerlussuaq sector of the Greenland ice sheet during the record-warm year 2010 explained by detailed energy balance observations
D. van As, A. L. Hubbard, B. Hasholt, A. B. Mikkelsen, M. R. van den Broeke, and R. S. Fausto
The Cryosphere, 6, 199–209, https://doi.org/10.5194/tc-6-199-2012,https://doi.org/10.5194/tc-6-199-2012, 2012
17 Feb 2012
Changes in the marine-terminating glaciers of central east Greenland, 2000–2010
K. M. Walsh, I. M. Howat, Y. Ahn, and E. M. Enderlin
The Cryosphere, 6, 211–220, https://doi.org/10.5194/tc-6-211-2012,https://doi.org/10.5194/tc-6-211-2012, 2012
17 Feb 2012
Derivation and analysis of a high-resolution estimate of global permafrost zonation
S. Gruber
The Cryosphere, 6, 221–233, https://doi.org/10.5194/tc-6-221-2012,https://doi.org/10.5194/tc-6-221-2012, 2012
08 Mar 2012
Estimating ice phenology on large northern lakes from AMSR-E: algorithm development and application to Great Bear Lake and Great Slave Lake, Canada
K.-K. Kang, C. R. Duguay, and S. E. L. Howell
The Cryosphere, 6, 235–254, https://doi.org/10.5194/tc-6-235-2012,https://doi.org/10.5194/tc-6-235-2012, 2012
08 Mar 2012
Coupling of climate models and ice sheet models by surface mass balance gradients: application to the Greenland Ice Sheet
M. M. Helsen, R. S. W. van de Wal, M. R. van den Broeke, W. J. van de Berg, and J. Oerlemans
The Cryosphere, 6, 255–272, https://doi.org/10.5194/tc-6-255-2012,https://doi.org/10.5194/tc-6-255-2012, 2012
13 Mar 2012
Kinematic first-order calving law implies potential for abrupt ice-shelf retreat
A. Levermann, T. Albrecht, R. Winkelmann, M. A. Martin, M. Haseloff, and I. Joughin
The Cryosphere, 6, 273–286, https://doi.org/10.5194/tc-6-273-2012,https://doi.org/10.5194/tc-6-273-2012, 2012
15 Mar 2012
Use of a thermal imager for snow pit temperatures
C. Shea, B. Jamieson, and K. W. Birkeland
The Cryosphere, 6, 287–299, https://doi.org/10.5194/tc-6-287-2012,https://doi.org/10.5194/tc-6-287-2012, 2012
15 Mar 2012
Relative effect of slope and equilibrium line altitude on the retreat of Himalayan glaciers
T. N. Venkatesh, A. V. Kulkarni, and J. Srinivasan
The Cryosphere, 6, 301–311, https://doi.org/10.5194/tc-6-301-2012,https://doi.org/10.5194/tc-6-301-2012, 2012
22 Mar 2012
Stable water isotopes of precipitation and firn cores from the northern Antarctic Peninsula region as a proxy for climate reconstruction
F. Fernandoy, H. Meyer, and M. Tonelli
The Cryosphere, 6, 313–330, https://doi.org/10.5194/tc-6-313-2012,https://doi.org/10.5194/tc-6-313-2012, 2012
23 Mar 2012
Inter-annual variations of snow days over Switzerland from 2000–2010 derived from MODIS satellite data
N. Foppa and G. Seiz
The Cryosphere, 6, 331–342, https://doi.org/10.5194/tc-6-331-2012,https://doi.org/10.5194/tc-6-331-2012, 2012
27 Mar 2012
An algorithm to detect sea ice leads by using AMSR-E passive microwave imagery
J. Röhrs and L. Kaleschke
The Cryosphere, 6, 343–352, https://doi.org/10.5194/tc-6-343-2012,https://doi.org/10.5194/tc-6-343-2012, 2012
27 Mar 2012
Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula
P. Kuipers Munneke, M. R. van den Broeke, J. C. King, T. Gray, and C. H. Reijmer
The Cryosphere, 6, 353–363, https://doi.org/10.5194/tc-6-353-2012,https://doi.org/10.5194/tc-6-353-2012, 2012
28 Mar 2012
Corrigendum to "An algorithm to detect sea ice leads by using AMSR-E passive microwave imagery" published in The Cryosphere, 6, 343–352, 2012
J. Röhrs, L. Kaleschke, D. Bröhan, and P. K. Siligam
The Cryosphere, 6, 365–365, https://doi.org/10.5194/tc-6-365-2012,https://doi.org/10.5194/tc-6-365-2012, 2012
30 Mar 2012
Thermal remote sensing of ice-debris landforms using ASTER: an example from the Chilean Andes
A. Brenning, M. A. Peña, S. Long, and A. Soliman
The Cryosphere, 6, 367–382, https://doi.org/10.5194/tc-6-367-2012,https://doi.org/10.5194/tc-6-367-2012, 2012
30 Mar 2012
Longitudinal surface structures (flowstripes) on Antarctic glaciers
N. F. Glasser and G. H. Gudmundsson
The Cryosphere, 6, 383–391, https://doi.org/10.5194/tc-6-383-2012,https://doi.org/10.5194/tc-6-383-2012, 2012
30 Mar 2012
Autonomous detection of calving-related seismicity at Kronebreen, Svalbard
A. Köhler, A. Chapuis, C. Nuth, J. Kohler, and C. Weidle
The Cryosphere, 6, 393–406, https://doi.org/10.5194/tc-6-393-2012,https://doi.org/10.5194/tc-6-393-2012, 2012
02 Apr 2012
Multi-scale validation of a new soil freezing scheme for a land-surface model with physically-based hydrology
I. Gouttevin, G. Krinner, P. Ciais, J. Polcher, and C. Legout
The Cryosphere, 6, 407–430, https://doi.org/10.5194/tc-6-407-2012,https://doi.org/10.5194/tc-6-407-2012, 2012
03 Apr 2012
Melt ponds on Arctic sea ice determined from MODIS satellite data using an artificial neural network
A. Rösel, L. Kaleschke, and G. Birnbaum
The Cryosphere, 6, 431–446, https://doi.org/10.5194/tc-6-431-2012,https://doi.org/10.5194/tc-6-431-2012, 2012
03 Apr 2012
Brief communication "Importance of slope-induced error correction in volume change estimates from radar altimetry"
R. T. W. L. Hurkmans, J. L. Bamber, and J. A. Griggs
The Cryosphere, 6, 447–451, https://doi.org/10.5194/tc-6-447-2012,https://doi.org/10.5194/tc-6-447-2012, 2012
10 Apr 2012
Seasonal speed-up of two outlet glaciers of Austfonna, Svalbard, inferred from continuous GPS measurements
T. Dunse, T. V. Schuler, J. O. Hagen, and C. H. Reijmer
The Cryosphere, 6, 453–466, https://doi.org/10.5194/tc-6-453-2012,https://doi.org/10.5194/tc-6-453-2012, 2012
10 Apr 2012
Repeat optical satellite images reveal widespread and long term decrease in land-terminating glacier speeds
T. Heid and A. Kääb
The Cryosphere, 6, 467–478, https://doi.org/10.5194/tc-6-467-2012,https://doi.org/10.5194/tc-6-467-2012, 2012
11 Apr 2012
Albedo of the ice covered Weddell and Bellingshausen Seas
A. I. Weiss, J. C. King, T. A. Lachlan-Cope, and R. S. Ladkin
The Cryosphere, 6, 479–491, https://doi.org/10.5194/tc-6-479-2012,https://doi.org/10.5194/tc-6-479-2012, 2012
16 Apr 2012
A numerical model for meltwater channel evolution in glaciers
A. H. Jarosch and M. T. Gudmundsson
The Cryosphere, 6, 493–503, https://doi.org/10.5194/tc-6-493-2012,https://doi.org/10.5194/tc-6-493-2012, 2012
18 Apr 2012
Relation between surface topography and sea-salt snow chemistry from Princess Elizabeth Land, East Antarctica
K. Mahalinganathan, M. Thamban, C. M. Laluraj, and B. L. Redkar
The Cryosphere, 6, 505–515, https://doi.org/10.5194/tc-6-505-2012,https://doi.org/10.5194/tc-6-505-2012, 2012
19 Apr 2012
Influence of surface and subsurface heterogeneity on observed borehole temperatures at a mountain permafrost site in the Upper Engadine, Swiss Alps
S. Schneider, M. Hoelzle, and C. Hauck
The Cryosphere, 6, 517–531, https://doi.org/10.5194/tc-6-517-2012,https://doi.org/10.5194/tc-6-517-2012, 2012
04 May 2012
Brief communication
Greenland's shrinking ice cover: "fast times" but not that fast
J. S. Kargel, A. P. Ahlstrøm, R. B. Alley, J. L. Bamber, T. J. Benham, J. E. Box, C. Chen, P. Christoffersen, M. Citterio, J. G. Cogley, H. Jiskoot, G. J. Leonard, P. Morin, T. Scambos, T. Sheldon, and I. Willis
The Cryosphere, 6, 533–537, https://doi.org/10.5194/tc-6-533-2012,https://doi.org/10.5194/tc-6-533-2012, 2012
21 May 2012
Sensitivity of a distributed temperature-radiation index melt model based on AWS observations and surface energy balance fluxes, Hurd Peninsula glaciers, Livingston Island, Antarctica
U. Y. Jonsell, F. J. Navarro, M. Bañón, J. J. Lapazaran, and J. Otero
The Cryosphere, 6, 539–552, https://doi.org/10.5194/tc-6-539-2012,https://doi.org/10.5194/tc-6-539-2012, 2012
23 May 2012
Modelling borehole temperatures in Southern Norway – insights into permafrost dynamics during the 20th and 21st century
T. Hipp, B. Etzelmüller, H. Farbrot, T. V. Schuler, and S. Westermann
The Cryosphere, 6, 553–571, https://doi.org/10.5194/tc-6-553-2012,https://doi.org/10.5194/tc-6-553-2012, 2012
30 May 2012
Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP
F. Pattyn, C. Schoof, L. Perichon, R. C. A. Hindmarsh, E. Bueler, B. de Fleurian, G. Durand, O. Gagliardini, R. Gladstone, D. Goldberg, G. H. Gudmundsson, P. Huybrechts, V. Lee, F. M. Nick, A. J. Payne, D. Pollard, O. Rybak, F. Saito, and A. Vieli
The Cryosphere, 6, 573–588, https://doi.org/10.5194/tc-6-573-2012,https://doi.org/10.5194/tc-6-573-2012, 2012
30 May 2012
An assessment of key model parametric uncertainties in projections of Greenland Ice Sheet behavior
P. J. Applegate, N. Kirchner, E. J. Stone, K. Keller, and R. Greve
The Cryosphere, 6, 589–606, https://doi.org/10.5194/tc-6-589-2012,https://doi.org/10.5194/tc-6-589-2012, 2012
31 May 2012
Thermal state of the active layer and permafrost along the Qinghai-Xizang (Tibet) Railway from 2006 to 2010
Q. Wu, T. Zhang, and Y. Liu
The Cryosphere, 6, 607–612, https://doi.org/10.5194/tc-6-607-2012,https://doi.org/10.5194/tc-6-607-2012, 2012
04 Jun 2012
Numerical modeling of permafrost dynamics in Alaska using a high spatial resolution dataset
E. E. Jafarov, S. S. Marchenko, and V. E. Romanovsky
The Cryosphere, 6, 613–624, https://doi.org/10.5194/tc-6-613-2012,https://doi.org/10.5194/tc-6-613-2012, 2012
06 Jun 2012
Multi-decadal marine- and land-terminating glacier recession in the Ammassalik region, southeast Greenland
S. H. Mernild, J. K. Malmros, J. C. Yde, and N. T. Knudsen
The Cryosphere, 6, 625–639, https://doi.org/10.5194/tc-6-625-2012,https://doi.org/10.5194/tc-6-625-2012, 2012
08 Jun 2012
Simulating melt, runoff and refreezing on Nordenskiöldbreen, Svalbard, using a coupled snow and energy balance model
W. J. J. van Pelt, J. Oerlemans, C. H. Reijmer, V. A. Pohjola, R. Pettersson, and J. H. van Angelen
The Cryosphere, 6, 641–659, https://doi.org/10.5194/tc-6-641-2012,https://doi.org/10.5194/tc-6-641-2012, 2012
14 Jun 2012
Spatial patterns of North Atlantic Oscillation influence on mass balance variability of European glaciers
B. Marzeion and A. Nesje
The Cryosphere, 6, 661–673, https://doi.org/10.5194/tc-6-661-2012,https://doi.org/10.5194/tc-6-661-2012, 2012
15 Jun 2012
Borehole temperatures reveal details of 20th century warming at Bruce Plateau, Antarctic Peninsula
V. Zagorodnov, O. Nagornov, T. A. Scambos, A. Muto, E. Mosley-Thompson, E. C. Pettit, and S. Tyuflin
The Cryosphere, 6, 675–686, https://doi.org/10.5194/tc-6-675-2012,https://doi.org/10.5194/tc-6-675-2012, 2012
27 Jun 2012
Brief communication "Can recent ice discharges following the Larsen-B ice-shelf collapse be used to infer the driving mechanisms of millennial-scale variations of the Laurentide ice sheet?"
J. Alvarez-Solas, A. Robinson, and C. Ritz
The Cryosphere, 6, 687–693, https://doi.org/10.5194/tc-6-687-2012,https://doi.org/10.5194/tc-6-687-2012, 2012
27 Jun 2012
Impact of spatial resolution on the modelling of the Greenland ice sheet surface mass balance between 1990–2010, using the regional climate model MAR
B. Franco, X. Fettweis, C. Lang, and M. Erpicum
The Cryosphere, 6, 695–711, https://doi.org/10.5194/tc-6-695-2012,https://doi.org/10.5194/tc-6-695-2012, 2012
06 Jul 2012
| Highlight paper
Extrapolating glacier mass balance to the mountain-range scale: the European Alps 1900–2100
M. Huss
The Cryosphere, 6, 713–727, https://doi.org/10.5194/tc-6-713-2012,https://doi.org/10.5194/tc-6-713-2012, 2012
10 Jul 2012
Laboratory study of initial sea-ice growth: properties of grease ice and nilas
A. K. Naumann, D. Notz, L. Håvik, and A. Sirevaag
The Cryosphere, 6, 729–741, https://doi.org/10.5194/tc-6-729-2012,https://doi.org/10.5194/tc-6-729-2012, 2012
11 Jul 2012
Refreezing on the Greenland ice sheet: a comparison of parameterizations
C. H. Reijmer, M. R. van den Broeke, X. Fettweis, J. Ettema, and L. B. Stap
The Cryosphere, 6, 743–762, https://doi.org/10.5194/tc-6-743-2012,https://doi.org/10.5194/tc-6-743-2012, 2012
12 Jul 2012
Significant contribution to total mass from very small glaciers
D. B. Bahr and V. Radić
The Cryosphere, 6, 763–770, https://doi.org/10.5194/tc-6-763-2012,https://doi.org/10.5194/tc-6-763-2012, 2012
17 Jul 2012
Sensitivity of basal conditions in an inverse model: Vestfonna ice cap, Nordaustlandet/Svalbard
M. Schäfer, T. Zwinger, P. Christoffersen, F. Gillet-Chaulet, K. Laakso, R. Pettersson, V. A. Pohjola, T. Strozzi, and J. C. Moore
The Cryosphere, 6, 771–783, https://doi.org/10.5194/tc-6-771-2012,https://doi.org/10.5194/tc-6-771-2012, 2012
24 Jul 2012
| Highlight paper
Statistical adaptation of ALADIN RCM outputs over the French Alps – application to future climate and snow cover
M. Rousselot, Y. Durand, G. Giraud, L. Mérindol, I. Dombrowski-Etchevers, M. Déqué, and H. Castebrunet
The Cryosphere, 6, 785–805, https://doi.org/10.5194/tc-6-785-2012,https://doi.org/10.5194/tc-6-785-2012, 2012
27 Jul 2012
Permafrost distribution in the European Alps: calculation and evaluation of an index map and summary statistics
L. Boeckli, A. Brenning, S. Gruber, and J. Noetzli
The Cryosphere, 6, 807–820, https://doi.org/10.5194/tc-6-807-2012,https://doi.org/10.5194/tc-6-807-2012, 2012
08 Aug 2012
Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers
J. E. Box, X. Fettweis, J. C. Stroeve, M. Tedesco, D. K. Hall, and K. Steffen
The Cryosphere, 6, 821–839, https://doi.org/10.5194/tc-6-821-2012,https://doi.org/10.5194/tc-6-821-2012, 2012
09 Aug 2012
Surface and snowdrift sublimation at Princess Elisabeth station, East Antarctica
W. Thiery, I. V. Gorodetskaya, R. Bintanja, N. P. M. Van Lipzig, M. R. Van den Broeke, C. H. Reijmer, and P. Kuipers Munneke
The Cryosphere, 6, 841–857, https://doi.org/10.5194/tc-6-841-2012,https://doi.org/10.5194/tc-6-841-2012, 2012
15 Aug 2012
Improved modelling of Siberian river flow through the use of an alternative frozen soil hydrology scheme in a land surface model
D. L. Finney, E. Blyth, and R. Ellis
The Cryosphere, 6, 859–870, https://doi.org/10.5194/tc-6-859-2012,https://doi.org/10.5194/tc-6-859-2012, 2012
15 Aug 2012
Antarctic sea ice variability and trends, 1979–2010
C. L. Parkinson and D. J. Cavalieri
The Cryosphere, 6, 871–880, https://doi.org/10.5194/tc-6-871-2012,https://doi.org/10.5194/tc-6-871-2012, 2012
15 Aug 2012
Arctic sea ice variability and trends, 1979–2010
D. J. Cavalieri and C. L. Parkinson
The Cryosphere, 6, 881–889, https://doi.org/10.5194/tc-6-881-2012,https://doi.org/10.5194/tc-6-881-2012, 2012
15 Aug 2012
Drifting snow climate of the Greenland ice sheet: a study with a regional climate model
J. T. M. Lenaerts, M. R. van den Broeke, J. H. van Angelen, E. van Meijgaard, and S. J. Déry
The Cryosphere, 6, 891–899, https://doi.org/10.5194/tc-6-891-2012,https://doi.org/10.5194/tc-6-891-2012, 2012
15 Aug 2012
Ikaite crystals in melting sea ice – implications for pCO2 and pH levels in Arctic surface waters
S. Rysgaard, R. N. Glud, K. Lennert, M. Cooper, N. Halden, R. J. G. Leakey, F. C. Hawthorne, and D. Barber
The Cryosphere, 6, 901–908, https://doi.org/10.5194/tc-6-901-2012,https://doi.org/10.5194/tc-6-901-2012, 2012
16 Aug 2012
Thin-layer effects in glaciological seismic amplitude-versus-angle (AVA) analysis: implications for characterising a subglacial till unit, Russell Glacier, West Greenland
A. D. Booth, R. A. Clark, B. Kulessa, T. Murray, J. Carter, S. Doyle, and A. Hubbard
The Cryosphere, 6, 909–922, https://doi.org/10.5194/tc-6-909-2012,https://doi.org/10.5194/tc-6-909-2012, 2012
10 Sep 2012
Glacier dynamics over the last quarter of a century at Helheim, Kangerdlugssuaq and 14 other major Greenland outlet glaciers
S. L. Bevan, A. J. Luckman, and T. Murray
The Cryosphere, 6, 923–937, https://doi.org/10.5194/tc-6-923-2012,https://doi.org/10.5194/tc-6-923-2012, 2012
10 Sep 2012
3-D image-based numerical computations of snow permeability: links to specific surface area, density, and microstructural anisotropy
N. Calonne, C. Geindreau, F. Flin, S. Morin, B. Lesaffre, S. Rolland du Roscoat, and P. Charrier
The Cryosphere, 6, 939–951, https://doi.org/10.5194/tc-6-939-2012,https://doi.org/10.5194/tc-6-939-2012, 2012
12 Sep 2012
A simple inverse method for the distribution of basal sliding coefficients under ice sheets, applied to Antarctica
D. Pollard and R. M. DeConto
The Cryosphere, 6, 953–971, https://doi.org/10.5194/tc-6-953-2012,https://doi.org/10.5194/tc-6-953-2012, 2012
12 Sep 2012
Evaluation of the criticality of cracks in ice shelves using finite element simulations
C. Plate, R. Müller, A. Humbert, and D. Gross
The Cryosphere, 6, 973–984, https://doi.org/10.5194/tc-6-973-2012,https://doi.org/10.5194/tc-6-973-2012, 2012
14 Sep 2012
Limitations of a coupled regional climate model in the reproduction of the observed Arctic sea-ice retreat
W. Dorn, K. Dethloff, and A. Rinke
The Cryosphere, 6, 985–998, https://doi.org/10.5194/tc-6-985-2012,https://doi.org/10.5194/tc-6-985-2012, 2012
18 Sep 2012
Sensitivity of a Greenland ice sheet model to atmospheric forcing fields
A. Quiquet, H. J. Punge, C. Ritz, X. Fettweis, H. Gallée, M. Kageyama, G. Krinner, D. Salas y Mélia, and J. Sjolte
The Cryosphere, 6, 999–1018, https://doi.org/10.5194/tc-6-999-2012,https://doi.org/10.5194/tc-6-999-2012, 2012
21 Sep 2012
Ice velocity changes in the Ross and Ronne sectors observed using satellite radar data from 1997 and 2009
B. Scheuchl, J. Mouginot, and E. Rignot
The Cryosphere, 6, 1019–1030, https://doi.org/10.5194/tc-6-1019-2012,https://doi.org/10.5194/tc-6-1019-2012, 2012
21 Sep 2012
Variable glacier response to atmospheric warming, northern Antarctic Peninsula, 1988–2009
B. J. Davies, J. L. Carrivick, N. F. Glasser, M. J. Hambrey, and J. L. Smellie
The Cryosphere, 6, 1031–1048, https://doi.org/10.5194/tc-6-1031-2012,https://doi.org/10.5194/tc-6-1031-2012, 2012
26 Sep 2012
A minimal, statistical model for the surface albedo of Vestfonna ice cap, Svalbard
M. Möller
The Cryosphere, 6, 1049–1061, https://doi.org/10.5194/tc-6-1049-2012,https://doi.org/10.5194/tc-6-1049-2012, 2012
27 Sep 2012
Uncertainties in the global temperature change caused by carbon release from permafrost thawing
E. J. Burke, I. P. Hartley, and C. D. Jones
The Cryosphere, 6, 1063–1076, https://doi.org/10.5194/tc-6-1063-2012,https://doi.org/10.5194/tc-6-1063-2012, 2012
02 Oct 2012
Simulating the growth of supraglacial lakes at the western margin of the Greenland ice sheet
A. A. Leeson, A. Shepherd, S. Palmer, A. Sundal, and X. Fettweis
The Cryosphere, 6, 1077–1086, https://doi.org/10.5194/tc-6-1077-2012,https://doi.org/10.5194/tc-6-1077-2012, 2012
02 Oct 2012
Glacier changes from 1966–2009 in the Gongga Mountains, on the south-eastern margin of the Qinghai-Tibetan Plateau and their climatic forcing
B. T. Pan, G. L. Zhang, J. Wang, B. Cao, H. P. Geng, J. Wang, C. Zhang, and Y. P. Ji
The Cryosphere, 6, 1087–1101, https://doi.org/10.5194/tc-6-1087-2012,https://doi.org/10.5194/tc-6-1087-2012, 2012
12 Oct 2012
Accelerated contributions of Canada's Baffin and Bylot Island glaciers to sea level rise over the past half century
A. Gardner, G. Moholdt, A. Arendt, and B. Wouters
The Cryosphere, 6, 1103–1125, https://doi.org/10.5194/tc-6-1103-2012,https://doi.org/10.5194/tc-6-1103-2012, 2012
15 Oct 2012
Inferring snowpack ripening and melt-out from distributed measurements of near-surface ground temperatures
M.-O. Schmid, S. Gubler, J. Fiddes, and S. Gruber
The Cryosphere, 6, 1127–1139, https://doi.org/10.5194/tc-6-1127-2012,https://doi.org/10.5194/tc-6-1127-2012, 2012
16 Oct 2012
Vapor flux and recrystallization during dry snow metamorphism under a steady temperature gradient as observed by time-lapse micro-tomography
B. R. Pinzer, M. Schneebeli, and T. U. Kaempfer
The Cryosphere, 6, 1141–1155, https://doi.org/10.5194/tc-6-1141-2012,https://doi.org/10.5194/tc-6-1141-2012, 2012
19 Oct 2012
| Highlight paper
Transition in the fractal geometry of Arctic melt ponds
C. Hohenegger, B. Alali, K. R. Steffen, D. K. Perovich, and K. M. Golden
The Cryosphere, 6, 1157–1162, https://doi.org/10.5194/tc-6-1157-2012,https://doi.org/10.5194/tc-6-1157-2012, 2012
22 Oct 2012
P-wave velocity changes in freezing hard low-porosity rocks: a laboratory-based time-average model
D. Draebing and M. Krautblatter
The Cryosphere, 6, 1163–1174, https://doi.org/10.5194/tc-6-1163-2012,https://doi.org/10.5194/tc-6-1163-2012, 2012
23 Oct 2012
Sensitivity of Greenland Ice Sheet surface mass balance to surface albedo parameterization: a study with a regional climate model
J. H. van Angelen, J. T. M. Lenaerts, S. Lhermitte, X. Fettweis, P. Kuipers Munneke, M. R. van den Broeke, E. van Meijgaard, and C. J. P. P. Smeets
The Cryosphere, 6, 1175–1186, https://doi.org/10.5194/tc-6-1175-2012,https://doi.org/10.5194/tc-6-1175-2012, 2012
24 Oct 2012
Sea ice inertial oscillations in the Arctic Basin
F. Gimbert, D. Marsan, J. Weiss, N. C. Jourdain, and B. Barnier
The Cryosphere, 6, 1187–1201, https://doi.org/10.5194/tc-6-1187-2012,https://doi.org/10.5194/tc-6-1187-2012, 2012
24 Oct 2012
Radar diagnosis of the subglacial conditions in Dronning Maud Land, East Antarctica
S. Fujita, P. Holmlund, K. Matsuoka, H. Enomoto, K. Fukui, F. Nakazawa, S. Sugiyama, and S. Surdyk
The Cryosphere, 6, 1203–1219, https://doi.org/10.5194/tc-6-1203-2012,https://doi.org/10.5194/tc-6-1203-2012, 2012
30 Oct 2012
Effects of nonlinear rheology, temperature and anisotropy on the relationship between age and depth at ice divides
C. Martín and G. H. Gudmundsson
The Cryosphere, 6, 1221–1229, https://doi.org/10.5194/tc-6-1221-2012,https://doi.org/10.5194/tc-6-1221-2012, 2012
01 Nov 2012
The early twentieth century warming and winter Arctic sea ice
V. A. Semenov and M. Latif
The Cryosphere, 6, 1231–1237, https://doi.org/10.5194/tc-6-1231-2012,https://doi.org/10.5194/tc-6-1231-2012, 2012
05 Nov 2012
Melting of Northern Greenland during the last interglaciation
A. Born and K. H. Nisancioglu
The Cryosphere, 6, 1239–1250, https://doi.org/10.5194/tc-6-1239-2012,https://doi.org/10.5194/tc-6-1239-2012, 2012
07 Nov 2012
Surge dynamics on Bering Glacier, Alaska, in 2008–2011
E. W. Burgess, R. R. Forster, C. F. Larsen, and M. Braun
The Cryosphere, 6, 1251–1262, https://doi.org/10.5194/tc-6-1251-2012,https://doi.org/10.5194/tc-6-1251-2012, 2012
07 Nov 2012
An ice flow modeling perspective on bedrock adjustment patterns of the Greenland ice sheet
M. Olaizola, R. S. W. van de Wal, M. M. Helsen, and B. de Boer
The Cryosphere, 6, 1263–1274, https://doi.org/10.5194/tc-6-1263-2012,https://doi.org/10.5194/tc-6-1263-2012, 2012
09 Nov 2012
Greenland ice sheet surface mass balance: evaluating simulations and making projections with regional climate models
J. G. L. Rae, G. Aðalgeirsdóttir, T. L. Edwards, X. Fettweis, J. M. Gregory, H. T. Hewitt, J. A. Lowe, P. Lucas-Picher, R. H. Mottram, A. J. Payne, J. K. Ridley, S. R. Shannon, W. J. van de Berg, R. S. W. van de Wal, and M. R. van den Broeke
The Cryosphere, 6, 1275–1294, https://doi.org/10.5194/tc-6-1275-2012,https://doi.org/10.5194/tc-6-1275-2012, 2012
12 Nov 2012
Past and future sea-level change from the surface mass balance of glaciers
B. Marzeion, A. H. Jarosch, and M. Hofer
The Cryosphere, 6, 1295–1322, https://doi.org/10.5194/tc-6-1295-2012,https://doi.org/10.5194/tc-6-1295-2012, 2012
13 Nov 2012
Simulating snow maps for Norway: description and statistical evaluation of the seNorge snow model
T. M. Saloranta
The Cryosphere, 6, 1323–1337, https://doi.org/10.5194/tc-6-1323-2012,https://doi.org/10.5194/tc-6-1323-2012, 2012
15 Nov 2012
Brief communication "Historical glacier length changes in West Greenland"
P. W. Leclercq, A. Weidick, F. Paul, T. Bolch, M. Citterio, and J. Oerlemans
The Cryosphere, 6, 1339–1343, https://doi.org/10.5194/tc-6-1339-2012,https://doi.org/10.5194/tc-6-1339-2012, 2012
16 Nov 2012
Snow accumulation variability derived from radar and firn core data along a 600 km transect in Adelie Land, East Antarctic plateau
D. Verfaillie, M. Fily, E. Le Meur, O. Magand, B. Jourdain, L. Arnaud, and V. Favier
The Cryosphere, 6, 1345–1358, https://doi.org/10.5194/tc-6-1345-2012,https://doi.org/10.5194/tc-6-1345-2012, 2012
16 Nov 2012
A simple approach to providing a more consistent Arctic sea ice extent time series from the 1950s to present
W. N. Meier, J. Stroeve, A. Barrett, and F. Fetterer
The Cryosphere, 6, 1359–1368, https://doi.org/10.5194/tc-6-1359-2012,https://doi.org/10.5194/tc-6-1359-2012, 2012
20 Nov 2012
Observations of enhanced thinning in the upper reaches of Svalbard glaciers
T. D. James, T. Murray, N. E. Barrand, H. J. Sykes, A. J. Fox, and M. A. King
The Cryosphere, 6, 1369–1381, https://doi.org/10.5194/tc-6-1369-2012,https://doi.org/10.5194/tc-6-1369-2012, 2012
22 Nov 2012
Constraining projections of summer Arctic sea ice
F. Massonnet, T. Fichefet, H. Goosse, C. M. Bitz, G. Philippon-Berthier, M. M. Holland, and P.-Y. Barriat
The Cryosphere, 6, 1383–1394, https://doi.org/10.5194/tc-6-1383-2012,https://doi.org/10.5194/tc-6-1383-2012, 2012
26 Nov 2012
Monte Carlo ice flow modeling projects a new stable configuration for Columbia Glacier, Alaska, c. 2020
W. Colgan, W. T. Pfeffer, H. Rajaram, W. Abdalati, and J. Balog
The Cryosphere, 6, 1395–1409, https://doi.org/10.5194/tc-6-1395-2012,https://doi.org/10.5194/tc-6-1395-2012, 2012
03 Dec 2012
Remote sensing of sea ice: advances during the DAMOCLES project
G. Heygster, V. Alexandrov, G. Dybkjær, W. von Hoyningen-Huene, F. Girard-Ardhuin, I. L. Katsev, A. Kokhanovsky, T. Lavergne, A. V. Malinka, C. Melsheimer, L. Toudal Pedersen, A. S. Prikhach, R. Saldo, R. Tonboe, H. Wiebe, and E. P. Zege
The Cryosphere, 6, 1411–1434, https://doi.org/10.5194/tc-6-1411-2012,https://doi.org/10.5194/tc-6-1411-2012, 2012
06 Dec 2012
Ground penetrating radar detection of subsnow slush on ice-covered lakes in interior Alaska
A. Gusmeroli and G. Grosse
The Cryosphere, 6, 1435–1443, https://doi.org/10.5194/tc-6-1435-2012,https://doi.org/10.5194/tc-6-1435-2012, 2012
06 Dec 2012
The footprint of Asian monsoon dynamics in the mass and energy balance of a Tibetan glacier
T. Mölg, F. Maussion, W. Yang, and D. Scherer
The Cryosphere, 6, 1445–1461, https://doi.org/10.5194/tc-6-1445-2012,https://doi.org/10.5194/tc-6-1445-2012, 2012
07 Dec 2012
Calibration of a surface mass balance model for global-scale applications
R. H. Giesen and J. Oerlemans
The Cryosphere, 6, 1463–1481, https://doi.org/10.5194/tc-6-1463-2012,https://doi.org/10.5194/tc-6-1463-2012, 2012
10 Dec 2012
The first complete inventory of the local glaciers and ice caps on Greenland
P. Rastner, T. Bolch, N. Mölg, H. Machguth, R. Le Bris, and F. Paul
The Cryosphere, 6, 1483–1495, https://doi.org/10.5194/tc-6-1483-2012,https://doi.org/10.5194/tc-6-1483-2012, 2012
12 Dec 2012
| Highlight paper
The stability of grounding lines on retrograde slopes
G. H. Gudmundsson, J. Krug, G. Durand, L. Favier, and O. Gagliardini
The Cryosphere, 6, 1497–1505, https://doi.org/10.5194/tc-6-1497-2012,https://doi.org/10.5194/tc-6-1497-2012, 2012
14 Dec 2012
A method for sea ice thickness and concentration analysis based on SAR data and a thermodynamic model
J. Karvonen, B. Cheng, T. Vihma, M. Arkett, and T. Carrieres
The Cryosphere, 6, 1507–1526, https://doi.org/10.5194/tc-6-1507-2012,https://doi.org/10.5194/tc-6-1507-2012, 2012
19 Dec 2012
Linking glacier annual mass balance and glacier albedo retrieved from MODIS data
M. Dumont, J. Gardelle, P. Sirguey, A. Guillot, D. Six, A. Rabatel, and Y. Arnaud
The Cryosphere, 6, 1527–1539, https://doi.org/10.5194/tc-6-1527-2012,https://doi.org/10.5194/tc-6-1527-2012, 2012
20 Dec 2012
Area change of glaciers in the Canadian Rocky Mountains, 1919 to 2006
C. Tennant, B. Menounos, R. Wheate, and J. J. Clague
The Cryosphere, 6, 1541–1552, https://doi.org/10.5194/tc-6-1541-2012,https://doi.org/10.5194/tc-6-1541-2012, 2012
20 Dec 2012
Variability of sea ice deformation rates in the Arctic and their relationship with basin-scale wind forcing
A. Herman and O. Glowacki
The Cryosphere, 6, 1553–1559, https://doi.org/10.5194/tc-6-1553-2012,https://doi.org/10.5194/tc-6-1553-2012, 2012
21 Dec 2012
Greenland ice sheet contribution to sea-level rise from a new-generation ice-sheet model
F. Gillet-Chaulet, O. Gagliardini, H. Seddik, M. Nodet, G. Durand, C. Ritz, T. Zwinger, R. Greve, and D. G. Vaughan
The Cryosphere, 6, 1561–1576, https://doi.org/10.5194/tc-6-1561-2012,https://doi.org/10.5194/tc-6-1561-2012, 2012
CC BY 4.0