Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
TC cover
Co-editors-in-chief: Florent Dominé, Olaf Eisen, Christian Haas, Christian Hauck & Thomas Mölg
The Cryosphere (TC) is a not-for-profit international scientific journal dedicated to the publication and discussion of research articles, short communications, and review papers on all aspects of frozen water and ground on Earth and on other planetary bodies.
The main subject areas are ice sheets and glaciers, planetary ice bodies, permafrost, river and lake ice, seasonal snow cover, sea ice, remote sensing, numerical modelling, in situ and laboratory studies of the above and including studies of the interaction of the cryosphere with the rest of the climate system.
News
24 Jun 2019 Update of journal metrics

The journal metrics were updated and the current numbers are available from the metrics box on the left-hand side.

24 Jun 2019 Update of journal metrics

The journal metrics were updated and the current numbers are available from the metrics box on the left-hand side.

29 May 2019 Publish your video abstract

A video abstract is a short video statement providing authors with the opportunity to present background information about their findings and to showcase their research activities to a wider audience.

29 May 2019 Publish your video abstract

A video abstract is a short video statement providing authors with the opportunity to present background information about their findings and to showcase their research activities to a wider audience.

09 Apr 2019 More than 90% of glacier volume in the Alps could be lost by 2100

New research on how glaciers in the European Alps will fare under a warming climate has come up with concerning results. Under a limited warming scenario, glaciers would lose about two-thirds of their present-day ice volume, while under strong warming, the Alps would be mostly ice free by 2100. The results, now published in The Cryosphere, are presented today (9 April) at the EGU General Assembly 2019 in Vienna, Austria.

09 Apr 2019 More than 90% of glacier volume in the Alps could be lost by 2100

New research on how glaciers in the European Alps will fare under a warming climate has come up with concerning results. Under a limited warming scenario, glaciers would lose about two-thirds of their present-day ice volume, while under strong warming, the Alps would be mostly ice free by 2100. The results, now published in The Cryosphere, are presented today (9 April) at the EGU General Assembly 2019 in Vienna, Austria.

Recent papers
19 Aug 2019
Glacier thickness estimations of alpine glaciers using data and modeling constraints
Lisbeth Langhammer, Melchior Grab, Andreas Bauder, and Hansruedi Maurer
The Cryosphere, 13, 2189–2202, https://doi.org/10.5194/tc-13-2189-2019,https://doi.org/10.5194/tc-13-2189-2019, 2019
Short summary
19 Aug 2019
Influence of light-absorbing particles on snow spectral irradiance profiles
Francois Tuzet, Marie Dumont, Laurent Arnaud, Didier Voisin, Maxim Lamare, Fanny Larue, Jesus Revuelto, and Ghislain Picard
The Cryosphere, 13, 2169–2187, https://doi.org/10.5194/tc-13-2169-2019,https://doi.org/10.5194/tc-13-2169-2019, 2019
Short summary
15 Aug 2019
Eemian Greenland ice sheet simulated with a higher-order model shows strong sensitivity to surface mass balance forcing
Andreas Plach, Kerim H. Nisancioglu, Petra M. Langebroek, Andreas Born, and Sébastien Le clec'h
The Cryosphere, 13, 2133–2148, https://doi.org/10.5194/tc-13-2133-2019,https://doi.org/10.5194/tc-13-2133-2019, 2019
Short summary
15 Aug 2019
Suitability analysis of ski areas in China: an integrated study based on natural and socioeconomic conditions
Jie Deng, Tao Che, Cunde Xiao, Shijin Wang, Liyun Dai, and Akynbekkyzy Meerzhan
The Cryosphere, 13, 2149–2167, https://doi.org/10.5194/tc-13-2149-2019,https://doi.org/10.5194/tc-13-2149-2019, 2019
Short summary
15 Aug 2019
The measurement and impact of light absorbing particles on snow surfaces
Carl G. Schmitt, Bria L. Riggs, Ulyana N. Horodyskyj, Alia L. Khan, Holly A. Ewing, John D. All, and Wilmer Sanchez Rodriguez
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-162,https://doi.org/10.5194/tc-2019-162, 2019
Manuscript under review for TC (discussion: open, 0 comments)
Short summary
Highlight articles
19 Jul 2019
Brief communication: Updated GAMDAM glacier inventory over high-mountain Asia
Akiko Sakai
The Cryosphere, 13, 2043–2049, https://doi.org/10.5194/tc-13-2043-2019,https://doi.org/10.5194/tc-13-2043-2019, 2019
Short summary
04 Jul 2019
Converting snow depth to snow water equivalent using climatological variables
David F. Hill, Elizabeth A. Burakowski, Ryan L. Crumley, Julia Keon, J. Michelle Hu, Anthony A. Arendt, Katreen Wikstrom Jones, and Gabriel J. Wolken
The Cryosphere, 13, 1767–1784, https://doi.org/10.5194/tc-13-1767-2019,https://doi.org/10.5194/tc-13-1767-2019, 2019
Short summary
27 May 2019
Recrystallization processes, microstructure and crystallographic preferred orientation evolution in polycrystalline ice during high-temperature simple shear
Baptiste Journaux, Thomas Chauve, Maurine Montagnat, Andrea Tommasi, Fabrice Barou, David Mainprice, and Léa Gest
The Cryosphere, 13, 1495–1511, https://doi.org/10.5194/tc-13-1495-2019,https://doi.org/10.5194/tc-13-1495-2019, 2019
Short summary
24 Apr 2019
Uncertainty quantification of the multi-centennial response of the Antarctic ice sheet to climate change
Kevin Bulthuis, Maarten Arnst, Sainan Sun, and Frank Pattyn
The Cryosphere, 13, 1349–1380, https://doi.org/10.5194/tc-13-1349-2019,https://doi.org/10.5194/tc-13-1349-2019, 2019
Short summary
24 Apr 2019
Winter tourism under climate change in the Pyrenees and the French Alps: relevance of snowmaking as a technical adaptation
Pierre Spandre, Hugues François, Deborah Verfaillie, Marc Pons, Matthieu Vernay, Matthieu Lafaysse, Emmanuelle George, and Samuel Morin
The Cryosphere, 13, 1325–1347, https://doi.org/10.5194/tc-13-1325-2019,https://doi.org/10.5194/tc-13-1325-2019, 2019
Short summary
Publications Copernicus