Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 4.713
IF4.713
IF 5-year value: 4.927
IF 5-year
4.927
CiteScore value: 8.0
CiteScore
8.0
SNIP value: 1.425
SNIP1.425
IPP value: 4.65
IPP4.65
SJR value: 2.353
SJR2.353
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 53
h5-index53
TC cover
Co-editors-in-chief: Chris Derksen, Olaf Eisen, Christian Haas, Christian Hauck, Nanna Bjørnholt Karlsson & Thomas Mölg

The Cryosphere (TC) is a not-for-profit international scientific journal dedicated to the publication and discussion of research articles, short communications, and review papers on all aspects of frozen water and ground on Earth and on other planetary bodies.

The main subject areas are ice sheets and glaciers, planetary ice bodies, permafrost, river and lake ice, seasonal snow cover, sea ice, remote sensing, numerical modelling, in situ and laboratory studies of the above and including studies of the interaction of the cryosphere with the rest of the climate system.

News
17 Sep 2020 Press Release: Emissions could add 38 centimetres to 2100 sea level rise

An international effort that brought together more than 60 ice, oceanic and atmospheric scientists from 3 dozen international institutions has generated new estimates of how much of an impact Earth's melting ice sheets could have on global sea levels by 2100. If greenhouse gas emissions continue apace, Greenland and Antarctica's ice sheets could together contribute more than 38 centimetres (15 inches) of global sea level rise – and that's beyond the amount that has already been set in motion by Earth's warming climate. These new results, published this week in a special issue of TC, come from the Ice Sheet Model Intercomparison Project (ISMIP6) led by NASA's Goddard Space Flight Center in Greenbelt, Maryland. Read more.

17 Sep 2020 Press Release: Emissions could add 38 centimetres to 2100 sea level rise

An international effort that brought together more than 60 ice, oceanic and atmospheric scientists from 3 dozen international institutions has generated new estimates of how much of an impact Earth's melting ice sheets could have on global sea levels by 2100. If greenhouse gas emissions continue apace, Greenland and Antarctica's ice sheets could together contribute more than 38 centimetres (15 inches) of global sea level rise – and that's beyond the amount that has already been set in motion by Earth's warming climate. These new results, published this week in a special issue of TC, come from the Ice Sheet Model Intercomparison Project (ISMIP6) led by NASA's Goddard Space Flight Center in Greenbelt, Maryland. Read more.

09 Sep 2020 Press Release: Deep channels link ocean to Antarctic glacier

Newly discovered deep seabed channels beneath Thwaites Glacier in West Antarctica may be the pathway for warm ocean water to melt the underside of the ice. Data from two research missions, using aircraft and ship, are helping scientists to understand the contribution this huge and remote glacier is likely to make to future global sea level rise. Two research papers published today in TC describe the discovery.

09 Sep 2020 Press Release: Deep channels link ocean to Antarctic glacier

Newly discovered deep seabed channels beneath Thwaites Glacier in West Antarctica may be the pathway for warm ocean water to melt the underside of the ice. Data from two research missions, using aircraft and ship, are helping scientists to understand the contribution this huge and remote glacier is likely to make to future global sea level rise. Two research papers published today in TC describe the discovery.

06 Jul 2020 Press Release: First findings from the MOSAiC ice floe

The New Siberian Islands were the birthplace of the MOSAiC floe: the sea ice in which the research vessel Polarstern is now drifting through the Arctic was formed in December 2018 off the coast of the archipelago, which separates the East Siberian Sea and the Laptev Sea to the north of Siberia. Please read the study that MOSAiC experts have published now in The Cryosphere, and which will provide the basis for numerous upcoming scientific assessments.

06 Jul 2020 Press Release: First findings from the MOSAiC ice floe

The New Siberian Islands were the birthplace of the MOSAiC floe: the sea ice in which the research vessel Polarstern is now drifting through the Arctic was formed in December 2018 off the coast of the archipelago, which separates the East Siberian Sea and the Laptev Sea to the north of Siberia. Please read the study that MOSAiC experts have published now in The Cryosphere, and which will provide the basis for numerous upcoming scientific assessments.

Recent papers
21 Sep 2020
How much snow falls in the world's mountains? A first look at mountain snowfall estimates in A-train observations and reanalyses
Anne Sophie Daloz, Marian Mateling, Tristan L'Ecuyer, Mark Kulie, Norm B. Wood, Mikael Durand, Melissa Wrzesien, Camilla W. Stjern, and Ashok P. Dimri
The Cryosphere, 14, 3195–3207, https://doi.org/10.5194/tc-14-3195-2020,https://doi.org/10.5194/tc-14-3195-2020, 2020
Short summary
21 Sep 2020
Hydrology and runoff routing of glacierized drainage basins in the Kongsfjord area, northwest Svalbard
Ankit Pramanik, Jack Kohler, Katrin Lindbäck, Penelope How, Ward Van Pelt, Glen Liston, and Thomas V. Schuler
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-197,https://doi.org/10.5194/tc-2020-197, 2020
Preprint under review for TC (discussion: open, 0 comments)
Short summary
21 Sep 2020
Surface melting over the Greenland ice sheet from enhanced resolution passive microwave brightness temperatures (1979–2019)
Paolo Colosio, Marco Tedesco, Xavier Fettweis, and Roberto Ranzi
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-250,https://doi.org/10.5194/tc-2020-250, 2020
Preprint under review for TC (discussion: open, 0 comments)
Short summary
21 Sep 2020
Modelling steady states and the transient response of debris-covered glaciers
James Ferguson and Andreas Vieli
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-228,https://doi.org/10.5194/tc-2020-228, 2020
Preprint under review for TC (discussion: open, 0 comments)
Short summary
21 Sep 2020
The transferability of adjoint inversion products between different ice flow models
Jowan M. Barnes, Thiago Dias dos Santos, Daniel Goldberg, G. Hilmar Gudmundsson, Mathieu Morlighem, and Jan De Rydt
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-235,https://doi.org/10.5194/tc-2020-235, 2020
Preprint under review for TC (discussion: open, 0 comments)
Short summary
Highlight articles
17 Sep 2020
A protocol for calculating basal melt rates in the ISMIP6 Antarctic ice sheet projections
Nicolas C. Jourdain, Xylar Asay-Davis, Tore Hattermann, Fiammetta Straneo, Hélène Seroussi, Christopher M. Little, and Sophie Nowicki
The Cryosphere, 14, 3111–3134, https://doi.org/10.5194/tc-14-3111-2020,https://doi.org/10.5194/tc-14-3111-2020, 2020
Short summary
17 Sep 2020
The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6
Heiko Goelzer, Sophie Nowicki, Anthony Payne, Eric Larour, Helene Seroussi, William H. Lipscomb, Jonathan Gregory, Ayako Abe-Ouchi, Andrew Shepherd, Erika Simon, Cécile Agosta, Patrick Alexander, Andy Aschwanden, Alice Barthel, Reinhard Calov, Christopher Chambers, Youngmin Choi, Joshua Cuzzone, Christophe Dumas, Tamsin Edwards, Denis Felikson, Xavier Fettweis, Nicholas R. Golledge, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Sebastien Le clec'h, Victoria Lee, Gunter Leguy, Chris Little, Daniel P. Lowry, Mathieu Morlighem, Isabel Nias, Aurelien Quiquet, Martin Rückamp, Nicole-Jeanne Schlegel, Donald A. Slater, Robin S. Smith, Fiamma Straneo, Lev Tarasov, Roderik van de Wal, and Michiel van den Broeke
The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020,https://doi.org/10.5194/tc-14-3071-2020, 2020
Short summary
17 Sep 2020
ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century
Hélène Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020,https://doi.org/10.5194/tc-14-3033-2020, 2020
Short summary
21 Jul 2020
Results of the third Marine Ice Sheet Model Intercomparison Project (MISMIP+)
Stephen L. Cornford, Helene Seroussi, Xylar S. Asay-Davis, G. Hilmar Gudmundsson, Rob Arthern, Chris Borstad, Julia Christmann, Thiago Dias dos Santos, Johannes Feldmann, Daniel Goldberg, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, Gunter Leguy, William H. Lipscomb, Nacho Merino, Gaël Durand, Mathieu Morlighem, David Pollard, Martin Rückamp, C. Rosie Williams, and Hongju Yu
The Cryosphere, 14, 2283–2301, https://doi.org/10.5194/tc-14-2283-2020,https://doi.org/10.5194/tc-14-2283-2020, 2020
Short summary
06 Jul 2020
The MOSAiC ice floe: sediment-laden survivor from the Siberian shelf
Thomas Krumpen, Florent Birrien, Frank Kauker, Thomas Rackow, Luisa von Albedyll, Michael Angelopoulos, H. Jakob Belter, Vladimir Bessonov, Ellen Damm, Klaus Dethloff, Jari Haapala, Christian Haas, Carolynn Harris, Stefan Hendricks, Jens Hoelemann, Mario Hoppmann, Lars Kaleschke, Michael Karcher, Nikolai Kolabutin, Ruibo Lei, Josefine Lenz, Anne Morgenstern, Marcel Nicolaus, Uwe Nixdorf, Tomash Petrovsky, Benjamin Rabe, Lasse Rabenstein, Markus Rex, Robert Ricker, Jan Rohde, Egor Shimanchuk, Suman Singha, Vasily Smolyanitsky, Vladimir Sokolov, Tim Stanton, Anna Timofeeva, Michel Tsamados, and Daniel Watkins
The Cryosphere, 14, 2173–2187, https://doi.org/10.5194/tc-14-2173-2020,https://doi.org/10.5194/tc-14-2173-2020, 2020
Short summary
Publications Copernicus