Volume 7, issue 1

Volume 7, issue 1

02 Jan 2013
Future projections of the Greenland ice sheet energy balance driving the surface melt
B. Franco, X. Fettweis, and M. Erpicum
The Cryosphere, 7, 1–18, https://doi.org/10.5194/tc-7-1-2013,https://doi.org/10.5194/tc-7-1-2013, 2013
04 Jan 2013
Manufactured solutions and the verification of three-dimensional Stokes ice-sheet models
W. Leng, L. Ju, M. Gunzburger, and S. Price
The Cryosphere, 7, 19–29, https://doi.org/10.5194/tc-7-19-2013,https://doi.org/10.5194/tc-7-19-2013, 2013
04 Jan 2013
Stable isotope and gas properties of two climatically contrasting (Pleistocene and Holocene) ice wedges from Cape Mamontov Klyk, Laptev Sea, northern Siberia
T. Boereboom, D. Samyn, H. Meyer, and J.-L. Tison
The Cryosphere, 7, 31–46, https://doi.org/10.5194/tc-7-31-2013,https://doi.org/10.5194/tc-7-31-2013, 2013
15 Jan 2013
Climatic drivers of seasonal glacier mass balances: an analysis of 6 decades at Glacier de Sarennes (French Alps)
E. Thibert, N. Eckert, and C. Vincent
The Cryosphere, 7, 47–66, https://doi.org/10.5194/tc-7-47-2013,https://doi.org/10.5194/tc-7-47-2013, 2013
21 Jan 2013
An analysis of present and future seasonal Northern Hemisphere land snow cover simulated by CMIP5 coupled climate models
C. Brutel-Vuilmet, M. Ménégoz, and G. Krinner
The Cryosphere, 7, 67–80, https://doi.org/10.5194/tc-7-67-2013,https://doi.org/10.5194/tc-7-67-2013, 2013
22 Jan 2013
| Highlight paper
Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change
A. Rabatel, B. Francou, A. Soruco, J. Gomez, B. Cáceres, J. L. Ceballos, R. Basantes, M. Vuille, J.-E. Sicart, C. Huggel, M. Scheel, Y. Lejeune, Y. Arnaud, M. Collet, T. Condom, G. Consoli, V. Favier, V. Jomelli, R. Galarraga, P. Ginot, L. Maisincho, J. Mendoza, M. Ménégoz, E. Ramirez, P. Ribstein, W. Suarez, M. Villacis, and P. Wagnon
The Cryosphere, 7, 81–102, https://doi.org/10.5194/tc-7-81-2013,https://doi.org/10.5194/tc-7-81-2013, 2013
23 Jan 2013
Glacier changes and climate trends derived from multiple sources in the data scarce Cordillera Vilcanota region, southern Peruvian Andes
N. Salzmann, C. Huggel, M. Rohrer, W. Silverio, B. G. Mark, P. Burns, and C. Portocarrero
The Cryosphere, 7, 103–118, https://doi.org/10.5194/tc-7-103-2013,https://doi.org/10.5194/tc-7-103-2013, 2013
28 Jan 2013
Calving on tidewater glaciers amplified by submarine frontal melting
M. O'Leary and P. Christoffersen
The Cryosphere, 7, 119–128, https://doi.org/10.5194/tc-7-119-2013,https://doi.org/10.5194/tc-7-119-2013, 2013
28 Jan 2013
Ice tectonic deformation during the rapid in situ drainage of a supraglacial lake on the Greenland Ice Sheet
S. H. Doyle, A. L. Hubbard, C. F. Dow, G. A. Jones, A. Fitzpatrick, A. Gusmeroli, B. Kulessa, K. Lindback, R. Pettersson, and J. E. Box
The Cryosphere, 7, 129–140, https://doi.org/10.5194/tc-7-129-2013,https://doi.org/10.5194/tc-7-129-2013, 2013
30 Jan 2013
An estimate of global glacier volume
A. Grinsted
The Cryosphere, 7, 141–151, https://doi.org/10.5194/tc-7-141-2013,https://doi.org/10.5194/tc-7-141-2013, 2013
30 Jan 2013
The impact of heterogeneous surface temperatures on the 2-m air temperature over the Arctic Ocean under clear skies in spring
A. Tetzlaff, L. Kaleschke, C. Lüpkes, F. Ament, and T. Vihma
The Cryosphere, 7, 153–166, https://doi.org/10.5194/tc-7-153-2013,https://doi.org/10.5194/tc-7-153-2013, 2013
31 Jan 2013
Environmental controls on the thermal structure of alpine glaciers
N. J. Wilson and G. E. Flowers
The Cryosphere, 7, 167–182, https://doi.org/10.5194/tc-7-167-2013,https://doi.org/10.5194/tc-7-167-2013, 2013
01 Feb 2013
Effect of higher-order stress gradients on the centennial mass evolution of the Greenland ice sheet
J. J. Fürst, H. Goelzer, and P. Huybrechts
The Cryosphere, 7, 183–199, https://doi.org/10.5194/tc-7-183-2013,https://doi.org/10.5194/tc-7-183-2013, 2013
01 Feb 2013
| Highlight paper
Brief Communication "Expansion of meltwater lakes on the Greenland Ice Sheet"
I. M. Howat, S. de la Peña, J. H. van Angelen, J. T. M. Lenaerts, and M. R. van den Broeke
The Cryosphere, 7, 201–204, https://doi.org/10.5194/tc-7-201-2013,https://doi.org/10.5194/tc-7-201-2013, 2013
01 Feb 2013
Analysis of the snow-atmosphere energy balance during wet-snow instabilities and implications for avalanche prediction
C. Mitterer and J. Schweizer
The Cryosphere, 7, 205–216, https://doi.org/10.5194/tc-7-205-2013,https://doi.org/10.5194/tc-7-205-2013, 2013
06 Feb 2013
Thermal conductivity of snow measured by three independent methods and anisotropy considerations
F. Riche and M. Schneebeli
The Cryosphere, 7, 217–227, https://doi.org/10.5194/tc-7-217-2013,https://doi.org/10.5194/tc-7-217-2013, 2013
07 Feb 2013
Restoring mass conservation to shallow ice flow models over complex terrain
A. H. Jarosch, C. G. Schoof, and F. S. Anslow
The Cryosphere, 7, 229–240, https://doi.org/10.5194/tc-7-229-2013,https://doi.org/10.5194/tc-7-229-2013, 2013
07 Feb 2013
Brief communication "Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet"
X. Fettweis, E. Hanna, C. Lang, A. Belleflamme, M. Erpicum, and H. Gallée
The Cryosphere, 7, 241–248, https://doi.org/10.5194/tc-7-241-2013,https://doi.org/10.5194/tc-7-241-2013, 2013
08 Feb 2013
Paleo ice flow and subglacial meltwater dynamics in Pine Island Bay, West Antarctica
F. O. Nitsche, K. Gohl, R. D. Larter, C.-D. Hillenbrand, G. Kuhn, J. A. Smith, S. Jacobs, J. B. Anderson, and M. Jakobsson
The Cryosphere, 7, 249–262, https://doi.org/10.5194/tc-7-249-2013,https://doi.org/10.5194/tc-7-249-2013, 2013
11 Feb 2013
Borehole temperatures reveal a changed energy budget at Mill Island, East Antarctica, over recent decades
J. L. Roberts, A. D. Moy, T. D. van Ommen, M. A. J. Curran, A. P. Worby, I. D. Goodwin, and M. Inoue
The Cryosphere, 7, 263–273, https://doi.org/10.5194/tc-7-263-2013,https://doi.org/10.5194/tc-7-263-2013, 2013
12 Feb 2013
A recent tipping point in the Arctic sea-ice cover: abrupt and persistent increase in the seasonal cycle since 2007
V. N. Livina and T. M. Lenton
The Cryosphere, 7, 275–286, https://doi.org/10.5194/tc-7-275-2013,https://doi.org/10.5194/tc-7-275-2013, 2013
15 Feb 2013
Analysis of ice phenology of lakes on the Tibetan Plateau from MODIS data
J. Kropáček, F. Maussion, F. Chen, S. Hoerz, and V. Hochschild
The Cryosphere, 7, 287–301, https://doi.org/10.5194/tc-7-287-2013,https://doi.org/10.5194/tc-7-287-2013, 2013
20 Feb 2013
A synthesis of the Antarctic surface mass balance during the last 800 yr
M. Frezzotti, C. Scarchilli, S. Becagli, M. Proposito, and S. Urbini
The Cryosphere, 7, 303–319, https://doi.org/10.5194/tc-7-303-2013,https://doi.org/10.5194/tc-7-303-2013, 2013
25 Feb 2013
Future Arctic marine access: analysis and evaluation of observations, models, and projections of sea ice
T. S. Rogers, J. E. Walsh, T. S. Rupp, L. W. Brigham, and M. Sfraga
The Cryosphere, 7, 321–332, https://doi.org/10.5194/tc-7-321-2013,https://doi.org/10.5194/tc-7-321-2013, 2013
27 Feb 2013
Event-driven deposition of snow on the Antarctic Plateau: analyzing field measurements with SNOWPACK
C. D. Groot Zwaaftink, A. Cagnati, A. Crepaz, C. Fierz, G. Macelloni, M. Valt, and M. Lehning
The Cryosphere, 7, 333–347, https://doi.org/10.5194/tc-7-333-2013,https://doi.org/10.5194/tc-7-333-2013, 2013
28 Feb 2013
Variability and trends in Laptev Sea ice outflow between 1992–2011
T. Krumpen, M. Janout, K. I. Hodges, R. Gerdes, F. Girard-Ardhuin, J. A. Hölemann, and S. Willmes
The Cryosphere, 7, 349–363, https://doi.org/10.5194/tc-7-349-2013,https://doi.org/10.5194/tc-7-349-2013, 2013
28 Feb 2013
Retention and radiative forcing of black carbon in eastern Sierra Nevada snow
K. M. Sterle, J. R. McConnell, J. Dozier, R. Edwards, and M. G. Flanner
The Cryosphere, 7, 365–374, https://doi.org/10.5194/tc-7-365-2013,https://doi.org/10.5194/tc-7-365-2013, 2013
28 Feb 2013
Bedmap2: improved ice bed, surface and thickness datasets for Antarctica
P. Fretwell, H. D. Pritchard, D. G. Vaughan, J. L. Bamber, N. E. Barrand, R. Bell, C. Bianchi, R. G. Bingham, D. D. Blankenship, G. Casassa, G. Catania, D. Callens, H. Conway, A. J. Cook, H. F. J. Corr, D. Damaske, V. Damm, F. Ferraccioli, R. Forsberg, S. Fujita, Y. Gim, P. Gogineni, J. A. Griggs, R. C. A. Hindmarsh, P. Holmlund, J. W. Holt, R. W. Jacobel, A. Jenkins, W. Jokat, T. Jordan, E. C. King, J. Kohler, W. Krabill, M. Riger-Kusk, K. A. Langley, G. Leitchenkov, C. Leuschen, B. P. Luyendyk, K. Matsuoka, J. Mouginot, F. O. Nitsche, Y. Nogi, O. A. Nost, S. V. Popov, E. Rignot, D. M. Rippin, A. Rivera, J. Roberts, N. Ross, M. J. Siegert, A. M. Smith, D. Steinhage, M. Studinger, B. Sun, B. K. Tinto, B. C. Welch, D. Wilson, D. A. Young, C. Xiangbin, and A. Zirizzotti
The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013,https://doi.org/10.5194/tc-7-375-2013, 2013
CC BY 4.0