Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 10, issue 3
The Cryosphere, 10, 1105–1124, 2016
https://doi.org/10.5194/tc-10-1105-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 10, 1105–1124, 2016
https://doi.org/10.5194/tc-10-1105-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 26 May 2016

Research article | 26 May 2016

Modeling debris-covered glaciers: response to steady debris deposition

Leif S. Anderson and Robert S. Anderson
Related authors  
Debris cover and the thinning of Kennicott Glacier, Alaska, Part C: feedbacks between melt, ice dynamics, and surface processes
Leif S. Anderson, William H. Armstrong, Robert S. Anderson, and Pascal Buri
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-178,https://doi.org/10.5194/tc-2019-178, 2019
Manuscript under review for TC
Short summary
Debris cover and the thinning of Kennicott Glacier, Alaska, Part A:in situ mass balance measurements
Leif S. Anderson, Robert S. Anderson, Pascal Buri, and William H. Armstrong
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-174,https://doi.org/10.5194/tc-2019-174, 2019
Manuscript under review for TC
Short summary
Debris cover and the thinning of Kennicott Glacier, Alaska, Part B: ice cliff delineation and distributed melt estimates
Leif S. Anderson, William H. Armstrong, Robert S. Anderson, and Pascal Buri
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-177,https://doi.org/10.5194/tc-2019-177, 2019
Manuscript under review for TC
Short summary
Related subject area  
Geomorphology
Ice-stream flow switching by up-ice propagation of instabilities along glacial marginal troughs
Etienne Brouard and Patrick Lajeunesse
The Cryosphere, 13, 981–996, https://doi.org/10.5194/tc-13-981-2019,https://doi.org/10.5194/tc-13-981-2019, 2019
Short summary
Evaluating the destabilization susceptibility of active rock glaciers in the French Alps
Marco Marcer, Charlie Serrano, Alexander Brenning, Xavier Bodin, Jason Goetz, and Philippe Schoeneich
The Cryosphere, 13, 141–155, https://doi.org/10.5194/tc-13-141-2019,https://doi.org/10.5194/tc-13-141-2019, 2019
Short summary
Glacial and geomorphic effects of a supraglacial lake drainage and outburst event, Everest region, Nepal Himalaya
Evan S. Miles, C. Scott Watson, Fanny Brun, Etienne Berthier, Michel Esteves, Duncan J. Quincey, Katie E. Miles, Bryn Hubbard, and Patrick Wagnon
The Cryosphere, 12, 3891–3905, https://doi.org/10.5194/tc-12-3891-2018,https://doi.org/10.5194/tc-12-3891-2018, 2018
Short summary
Basal control of supraglacial meltwater catchments on the Greenland Ice Sheet
Josh Crozier, Leif Karlstrom, and Kang Yang
The Cryosphere, 12, 3383–3407, https://doi.org/10.5194/tc-12-3383-2018,https://doi.org/10.5194/tc-12-3383-2018, 2018
Short summary
How dynamic are ice-stream beds?
Damon Davies, Robert G. Bingham, Edward C. King, Andrew M. Smith, Alex M. Brisbourne, Matteo Spagnolo, Alastair G. C. Graham, Anna E. Hogg, and David G. Vaughan
The Cryosphere, 12, 1615–1628, https://doi.org/10.5194/tc-12-1615-2018,https://doi.org/10.5194/tc-12-1615-2018, 2018
Short summary
Cited articles  
Anderson, L. S.: Glacier response to climate change: modeling the effects of weather and debris-cover, PhD thesis, University of Colorado, Boulder, 175 pp., 2014.
Anderson, L. S., Roe, G. H., and Anderson, R. S.: The effects of interannual climate variability on the moraine record, Geology, 42, 55–58, 2014.
Anderson, R. S.: A model of ablation-dominated medial moraines and the generation of debris-mantled glacier terms, J. Glaciol., 46, 459–469, https://doi.org/10.3189/172756500781833025, 2000.
Arsenault, A. M. and Meigs, A. J.: Contribution of deep-seated bedrock landslides to erosion of a glaciated basin in southern Alaska, Earth Surf. Proc. Land., 30, 1111–1125, https://doi.org/10.1002/esp.1265, 2005.
Ballantyne, C. K. and Harris, C.: The Periglaciation of Great Britain, Cambridge University Press, Cambridge, UK, 335 pp., 1994.
Publications Copernicus
Download
Short summary
Mountains erode and shed rocks down slope. When these rocks (debris) fall on glacier ice they can suppress ice melt. By protecting glaciers from melt, debris can make glaciers extend to lower elevations. Using mathematical models of glaciers and debris deposition, we find that debris can more than double the length of glaciers. The amount of debris deposited on the glacier, which scales with mountain height and steepness, is the most important control on debris-covered glacier length and volume.
Mountains erode and shed rocks down slope. When these rocks (debris) fall on glacier ice they...
Citation