Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 10, issue 4
The Cryosphere, 10, 1679–1694, 2016
https://doi.org/10.5194/tc-10-1679-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 10, 1679–1694, 2016
https://doi.org/10.5194/tc-10-1679-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 02 Aug 2016

Research article | 02 Aug 2016

Greenland annual accumulation along the EGIG line, 1959–2004, from ASIRAS airborne radar and neutron-probe density measurements

Thomas B. Overly et al.
Related authors  
A model for French-press experiments of dry snow compaction
Colin R. Meyer, Kaitlin M. Keegan, Ian Baker, and Robert L. Hawley
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-253,https://doi.org/10.5194/tc-2019-253, 2019
Manuscript under review for TC
Short summary
Recent precipitation decrease across the western Greenland ice sheet percolation zone
Gabriel Lewis, Erich Osterberg, Robert Hawley, Hans Peter Marshall, Tate Meehan, Karina Graeter, Forrest McCarthy, Thomas Overly, Zayta Thundercloud, and David Ferris
The Cryosphere, 13, 2797–2815, https://doi.org/10.5194/tc-13-2797-2019,https://doi.org/10.5194/tc-13-2797-2019, 2019
Short summary
Incorporating moisture content in surface energy balance modeling of a debris-covered glacier
Alexandra Giese, Aaron Boone, Patrick Wagnon, and Robert Hawley
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-168,https://doi.org/10.5194/tc-2019-168, 2019
Manuscript under review for TC
Short summary
The response of supraglacial debris to elevated, high frequencyGPR: Volumetric scatter and interfacial dielectric contrastsinterpreted from field and experimental studies
Alexandra Giese, Steven Arcone, Robert Hawley, Gabriel Lewis, and Patrick Wagnon
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-60,https://doi.org/10.5194/tc-2019-60, 2019
Revised manuscript under review for TC
Short summary
Firn data compilation reveals widespread decrease of firn air content in western Greenland
Baptiste Vandecrux, Michael MacFerrin, Horst Machguth, William T. Colgan, Dirk van As, Achim Heilig, C. Max Stevens, Charalampos Charalampidis, Robert S. Fausto, Elizabeth M. Morris, Ellen Mosley-Thompson, Lora Koenig, Lynn N. Montgomery, Clément Miège, Sebastian B. Simonsen, Thomas Ingeman-Nielsen, and Jason E. Box
The Cryosphere, 13, 845–859, https://doi.org/10.5194/tc-13-845-2019,https://doi.org/10.5194/tc-13-845-2019, 2019
Short summary
Related subject area  
Remote Sensing
Recent glacier and lake changes in High Mountain Asia and their relation to precipitation changes
Désirée Treichler, Andreas Kääb, Nadine Salzmann, and Chong-Yu Xu
The Cryosphere, 13, 2977–3005, https://doi.org/10.5194/tc-13-2977-2019,https://doi.org/10.5194/tc-13-2977-2019, 2019
Short summary
Multisensor validation of tidewater glacier flow fields derived from synthetic aperture radar (SAR) intensity tracking
Christoph Rohner, David Small, Daniel Henke, Martin P. Lüthi, and Andreas Vieli
The Cryosphere, 13, 2953–2975, https://doi.org/10.5194/tc-13-2953-2019,https://doi.org/10.5194/tc-13-2953-2019, 2019
Short summary
Estimating the sea ice floe size distribution using satellite altimetry: theory, climatology, and model comparison
Christopher Horvat, Lettie A. Roach, Rachel Tilling, Cecilia M. Bitz, Baylor Fox-Kemper, Colin Guider, Kaitlin Hill, Andy Ridout, and Andrew Shepherd
The Cryosphere, 13, 2869–2885, https://doi.org/10.5194/tc-13-2869-2019,https://doi.org/10.5194/tc-13-2869-2019, 2019
Short summary
Detecting dynamics of cave floor ice with selective cloud-to-cloud approach
Jozef Šupinský, Ján Kaňuk, Zdenko Hochmuth, and Michal Gallay
The Cryosphere, 13, 2835–2851, https://doi.org/10.5194/tc-13-2835-2019,https://doi.org/10.5194/tc-13-2835-2019, 2019
Short summary
Regional influence of ocean–atmosphere teleconnections on the timing and duration of MODIS-derived snow cover in British Columbia, Canada
Alexandre R. Bevington, Hunter E. Gleason, Vanessa N. Foord, William C. Floyd, and Hardy P. Griesbauer
The Cryosphere, 13, 2693–2712, https://doi.org/10.5194/tc-13-2693-2019,https://doi.org/10.5194/tc-13-2693-2019, 2019
Short summary
Cited articles  
Anklin, M. and Stauffer, B.: Pattern of annual snow accumulation along a west Greenland flow lone: no significant change observed during recent decades, Tellus B, 46, 294–303, 1994.
Arcone, S., Spikes, V., Hamilton, G., and Mayewski, P. A.: Stratigraphic continuity in 400 MHz short-pulse radar profiles of firn in West Antarctica, Ann. Glaciol., 39, 195–200, 2004.
Arcone, S., Spikes, V., and Hamilton, G.: Stratigraphic variation within polar firn caused by differential accumulation and ice flow: interpretation of a 400 MHz short-pulse radar profile from West Antarctica, J. Glaciol., 51, 407–422, 2005.
Bales, R. C., McConnell, J. R., Mosley-Thompson, E., and Csatho, B.: Accumulation over the Greenland ice sheet from historical and recent records, J. Geophys. Res.-Atmos., 106, 33813–33825, 2001.
Bales, R. C., Guo, Q., Shen, D., McConnell, J., Du, G., Burkhart, J. F., Spikes, V., Hanna, E., and Cappelen, J.: Annual accumulation for Greenland updated using ice core data developed during 2000–2006 and analysis of daily coastal meteorological data, J. Geophys. Res., 114, D06116, https://doi.org/10.1029/2008JD011208, 2009.
Publications Copernicus
Download
Short summary
We demonstrate that snow accumulation rates across the Greenland Ice Sheet, determined from RADAR layers and modeled snow density profiles, are identical to ground-based measurements of snow accumulation. Three regional climate models underestimate snow accumulation compared to RADAR layer estimates. Using RADAR increases spatial coverage and improves accuracy of snow accumulation estimates. Incorporating our results into climate models may reduce uncertainty of sea-level rise estimates.
We demonstrate that snow accumulation rates across the Greenland Ice Sheet, determined from...
Citation