Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 10, issue 4
The Cryosphere, 10, 1739–1752, 2016
https://doi.org/10.5194/tc-10-1739-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Mass balance of the Greenland Ice Sheet

The Cryosphere, 10, 1739–1752, 2016
https://doi.org/10.5194/tc-10-1739-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 11 Aug 2016

Research article | 11 Aug 2016

Annual Greenland accumulation rates (2009–2012) from airborne snow radar

Lora S. Koenig et al.

Related authors

Brief communication: Mapping Greenland’s perennial firn aquifers using enhanced- resolution L-band brightness temperature image time series
Julie Z. Miller, David G. Long, Kenneth .C Jezek, Joel T. Johnson, Mary J. Brodzik, Christopher A. Shuman, Lora S. Koenig, and Theodore Allan Scambos
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-30,https://doi.org/10.5194/tc-2020-30, 2020
Revised manuscript under review for TC
The SUMup dataset: compiled measurements of surface mass balance components over ice sheets and sea ice with analysis over Greenland
Lynn Montgomery, Lora Koenig, and Patrick Alexander
Earth Syst. Sci. Data, 10, 1959–1985, https://doi.org/10.5194/essd-10-1959-2018,https://doi.org/10.5194/essd-10-1959-2018, 2018
Short summary
Wintertime storage of water in buried supraglacial lakes across the Greenland Ice Sheet
L. S. Koenig, D. J. Lampkin, L. N. Montgomery, S. L. Hamilton, J. B. Turrin, C. A. Joseph, S. E. Moutsafa, B. Panzer, K. A. Casey, J. D. Paden, C. Leuschen, and P. Gogineni
The Cryosphere, 9, 1333–1342, https://doi.org/10.5194/tc-9-1333-2015,https://doi.org/10.5194/tc-9-1333-2015, 2015
Short summary
Multi-modal albedo distributions in the ablation area of the southwestern Greenland Ice Sheet
S. E. Moustafa, A. K. Rennermalm, L. C. Smith, M. A. Miller, J. R. Mioduszewski, L. S. Koenig, M. G. Hom, and C. A. Shuman
The Cryosphere, 9, 905–923, https://doi.org/10.5194/tc-9-905-2015,https://doi.org/10.5194/tc-9-905-2015, 2015
Weekly gridded Aquarius L-band radiometer/scatterometer observations and salinity retrievals over the polar regions – Part 1: Product description
L. Brucker, E. P. Dinnat, and L. S. Koenig
The Cryosphere, 8, 905–913, https://doi.org/10.5194/tc-8-905-2014,https://doi.org/10.5194/tc-8-905-2014, 2014

Related subject area

Greenland
Horizontal ice flow impacts the firn structure of Greenland's percolation zone
Rosemary Leone, Joel Harper, Toby Meierbachtol, and Neil Humphrey
The Cryosphere, 14, 1703–1712, https://doi.org/10.5194/tc-14-1703-2020,https://doi.org/10.5194/tc-14-1703-2020, 2020
Short summary
Brief communication: CESM2 climate forcing (1950–2014) yields realistic Greenland ice sheet surface mass balance
Brice Noël, Leonardus van Kampenhout, Willem Jan van de Berg, Jan T. M. Lenaerts, Bert Wouters, and Michiel R. van den Broeke
The Cryosphere, 14, 1425–1435, https://doi.org/10.5194/tc-14-1425-2020,https://doi.org/10.5194/tc-14-1425-2020, 2020
Short summary
Unprecedented atmospheric conditions (1948–2019) drive the 2019 exceptional melting season over the Greenland ice sheet
Marco Tedesco and Xavier Fettweis
The Cryosphere, 14, 1209–1223, https://doi.org/10.5194/tc-14-1209-2020,https://doi.org/10.5194/tc-14-1209-2020, 2020
Short summary
Calving event size measurements and statistics of Eqip Sermia, Greenland, from terrestrial radar interferometry
Andrea Walter, Martin P. Lüthi, and Andreas Vieli
The Cryosphere, 14, 1051–1066, https://doi.org/10.5194/tc-14-1051-2020,https://doi.org/10.5194/tc-14-1051-2020, 2020
Short summary
Brief communication: Evaluation of the near-surface climate in ERA5 over the Greenland Ice Sheet
Alison Delhasse, Christoph Kittel, Charles Amory, Stefan Hofer, Dirk van As, Robert S. Fausto, and Xavier Fettweis
The Cryosphere, 14, 957–965, https://doi.org/10.5194/tc-14-957-2020,https://doi.org/10.5194/tc-14-957-2020, 2020
Short summary

Cited articles

Alexander, P. M., Tedesco, M., Fettweis, X., van de Wal, R. S. W., Smeets, C. J. P. P., and van den Broeke, M. R.: Assessing spatio-temporal variability and trends in modelled and measured Greenland Ice Sheet albedo (2000–2013), The Cryosphere, 8, 2293–2312, https://doi.org/10.5194/tc-8-2293-2014, 2014.
Alley, R. B., Saltzman, E. S., Cuffey, K. M., and Fitzpatrick, J. J.: Summertime formation of Depth Hoar in central Greenland, Geophys. Res. Lett., 17, 2393–2396, 1990.
Anschütz, H., Steinhage, D., Eisen, O., Oerter, H., Horwath, M., and Ruth, U.: Small-scale spatio-temporal characteristics of accumulation rates in western Dronning Maud Land, Antarctica, J. Glaciol., 54, 315–323, 2008.
Arcone, S. A., Spikes, V. B., and Hamilton, G. S.: Phase structure of radar stratigraphic horizons within Antarctic firn, Ann. Glaciol., 41, 10–16, 2005.
Baker, I: NEEM Firn Core 2009S2 Density and Permeability, NSF Arctic Data Center, https://doi.org/10.18739/A2Q88G, 2012.
Publications Copernicus
Download
Short summary
Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet through increasing surface melt, emphasizing the need to closely monitor surface mass balance in order to improve sea-level rise predictions. Here, we quantify the net annual accumulation over the Greenland Ice Sheet, which comprises the largest component of surface mass balance, at a higher spatial resolution than currently available using high-resolution, airborne-radar data.
Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice...
Citation