Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 10, issue 4
The Cryosphere, 10, 1809–1821, 2016
https://doi.org/10.5194/tc-10-1809-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 10, 1809–1821, 2016
https://doi.org/10.5194/tc-10-1809-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 22 Aug 2016

Research article | 22 Aug 2016

Rapid glacial retreat on the Kamchatka Peninsula during the early 21st century

Colleen M. Lynch et al.
Related authors  
A 305-year continuous monthly rainfall series for the island of Ireland (1711–2016)
Conor Murphy, Ciaran Broderick, Timothy P. Burt, Mary Curley, Catriona Duffy, Julia Hall, Shaun Harrigan, Tom K. R. Matthews, Neil Macdonald, Gerard McCarthy, Mark P. McCarthy, Donal Mullan, Simon Noone, Timothy J. Osborn, Ciara Ryan, John Sweeney, Peter W. Thorne, Seamus Walsh, and Robert L. Wilby
Clim. Past, 14, 413–440, https://doi.org/10.5194/cp-14-413-2018,https://doi.org/10.5194/cp-14-413-2018, 2018
Short summary
Glacio-archaeological evidence of warmer climate during the Little Ice Age in the Miyar basin, Lahul Himalaya, India
Rakesh Saini, Milap Chand Sharma, Sanjay Deswal, Iestyn David Barr, and Parvendra Kumar
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-101,https://doi.org/10.5194/cp-2016-101, 2016
Manuscript not accepted for further review
Short summary
Related subject area  
Glaciers
Brief communication: Updated GAMDAM glacier inventory over high-mountain Asia
Akiko Sakai
The Cryosphere, 13, 2043–2049, https://doi.org/10.5194/tc-13-2043-2019,https://doi.org/10.5194/tc-13-2043-2019, 2019
Short summary
Ice cliff contribution to the tongue-wide ablation of Changri Nup Glacier, Nepal, central Himalaya
Fanny Brun, Patrick Wagnon, Etienne Berthier, Joseph M. Shea, Walter W. Immerzeel, Philip D. A. Kraaijenbrink, Christian Vincent, Camille Reverchon, Dibas Shrestha, and Yves Arnaud
The Cryosphere, 12, 3439–3457, https://doi.org/10.5194/tc-12-3439-2018,https://doi.org/10.5194/tc-12-3439-2018, 2018
Short summary
Effects of undercutting and sliding on calving: a global approach applied to Kronebreen, Svalbard
Dorothée Vallot, Jan Åström, Thomas Zwinger, Rickard Pettersson, Alistair Everett, Douglas I. Benn, Adrian Luckman, Ward J. J. van Pelt, Faezeh Nick, and Jack Kohler
The Cryosphere, 12, 609–625, https://doi.org/10.5194/tc-12-609-2018,https://doi.org/10.5194/tc-12-609-2018, 2018
Short summary
Surface lowering of the debris-covered area of Kanchenjunga Glacier in the eastern Nepal Himalaya since 1975, as revealed by Hexagon KH-9 and ALOS satellite observations
Damodar Lamsal, Koji Fujita, and Akiko Sakai
The Cryosphere, 11, 2815–2827, https://doi.org/10.5194/tc-11-2815-2017,https://doi.org/10.5194/tc-11-2815-2017, 2017
Short summary
Initiation of a major calving event on the Bowdoin Glacier captured by UAV photogrammetry
Guillaume Jouvet, Yvo Weidmann, Julien Seguinot, Martin Funk, Takahiro Abe, Daiki Sakakibara, Hakime Seddik, and Shin Sugiyama
The Cryosphere, 11, 911–921, https://doi.org/10.5194/tc-11-911-2017,https://doi.org/10.5194/tc-11-911-2017, 2017
Short summary
Cited articles  
Ananicheva, M. D., Krenke, A. N., and Barry, R. G.: The Northeast Asia mountain glaciers in the near future by AOGCM scenarios, The Cryosphere, 4, 435–445, https://doi.org/10.5194/tc-4-435-2010, 2010.
Bajracharya, S. R. and Shresta, B. (Eds.): The Status of Glaciers in the Hindu Kush-Himalayan Region, Kathmandu: ICIMOD, 2011.
Bajracharya, S. R., Maharjan, S. B., and Shrestha, F.: The status and decadal change of glaciers in Bhutan from the 1980s to 2010 based on satellite data, Ann. Glaciol., 55, 66, https://doi.org/10.3189/2014AoG66A125, 2014.
Publications Copernicus
Download
Short summary
Early 21st century changes in the extent of glaciers on Kamchatka were manually mapped from satellite imagery. This revealed 673 glaciers, with a total surface area of 775.7 ± 27.9 km2 in 2000, and 738 glaciers, with a total area of 592.9 ± 20.4 km2 in 2014. This ~24 % decline in glacier surface area is considered to reflect variations in climate (particularly rising summer temperatures), though the response of individual glaciers was likely modulated by other (non-climatic) factors.
Early 21st century changes in the extent of glaciers on Kamchatka were manually mapped from...
Citation