Research article
15 Mar 2016
Research article | 15 Mar 2016
Tilt error in cryospheric surface radiation measurements at high latitudes: a model study
Wiley Steven Bogren et al.
Related authors
The Lagrangian particle dispersion model FLEXPART version 10.4
Ignacio Pisso, Espen Sollum, Henrik Grythe, Nina I. Kristiansen, Massimo Cassiani, Sabine Eckhardt, Delia Arnold, Don Morton, Rona L. Thompson, Christine D. Groot Zwaaftink, Nikolaos Evangeliou, Harald Sodemann, Leopold Haimberger, Stephan Henne, Dominik Brunner, John F. Burkhart, Anne Fouilloux, Jerome Brioude, Anne Philipp, Petra Seibert, and Andreas Stohl
Geosci. Model Dev., 12, 4955–4997, https://doi.org/10.5194/gmd-12-4955-2019,https://doi.org/10.5194/gmd-12-4955-2019, 2019
Short summary
Can statistics of turbulent tracer dispersion be inferred from camera observations of SO2 in the ultraviolet?
Arve Kylling, Hamidreza Ardeshiri, Massimo Cassiani, Anna Solvejg Dinger, Soon-Young Park, Ignacio Pisso, Norbert Schmidbauer, Kerstin Stebel, and Andreas Stohl
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-286,https://doi.org/10.5194/amt-2019-286, 2019
Manuscript under review for AMT
Short summary
The Mineral Aerosol Profiling from Infrared Radiances (MAPIR) algorithm: version 4.1 description and evaluation
Sieglinde Callewaert, Sophie Vandenbussche, Nicolas Kumps, Arve Kylling, Xiaoxia Shang, Mika Komppula, Philippe Goloub, and Martine De Mazière
Atmos. Meas. Tech., 12, 3673–3698, https://doi.org/10.5194/amt-12-3673-2019,https://doi.org/10.5194/amt-12-3673-2019, 2019
Short summary
Simulations of black carbon (BC) aerosol impact over Hindu Kush Himalayan sites: validation, sources, and implications on glacier runoff
Sauvik Santra, Shubha Verma, Koji Fujita, Indrajit Chakraborty, Olivier Boucher, Toshihiko Takemura, John F. Burkhart, Felix Matt, and Mukesh Sharma
Atmos. Chem. Phys., 19, 2441–2460, https://doi.org/10.5194/acp-19-2441-2019,https://doi.org/10.5194/acp-19-2441-2019, 2019
Short summary
Open fires in Greenland in summer 2017: transport, deposition and radiative effects of BC, OC and BrC emissions
Nikolaos Evangeliou, Arve Kylling, Sabine Eckhardt, Viktor Myroniuk, Kerstin Stebel, Ronan Paugam, Sergiy Zibtsev, and Andreas Stohl
Atmos. Chem. Phys., 19, 1393–1411, https://doi.org/10.5194/acp-19-1393-2019,https://doi.org/10.5194/acp-19-1393-2019, 2019
Short summary
Observation of turbulent dispersion of artificially released SO2 puffs with UV cameras
Anna Solvejg Dinger, Kerstin Stebel, Massimo Cassiani, Hamidreza Ardeshiri, Cirilo Bernardo, Arve Kylling, Soon-Young Park, Ignacio Pisso, Norbert Schmidbauer, Jan Wasseng, and Andreas Stohl
Atmos. Meas. Tech., 11, 6169–6188, https://doi.org/10.5194/amt-11-6169-2018,https://doi.org/10.5194/amt-11-6169-2018, 2018
Short summary
Comparison of dust-layer heights from active and passive satellite sensors
Arve Kylling, Sophie Vandenbussche, Virginie Capelle, Juan Cuesta, Lars Klüser, Luca Lelli, Thomas Popp, Kerstin Stebel, and Pepijn Veefkind
Atmos. Meas. Tech., 11, 2911–2936, https://doi.org/10.5194/amt-11-2911-2018,https://doi.org/10.5194/amt-11-2911-2018, 2018
Short summary
Unmanned aerial system nadir reflectance and MODIS nadir BRDF-adjusted surface reflectances intercompared over Greenland
John Faulkner Burkhart, Arve Kylling, Crystal B. Schaaf, Zhuosen Wang, Wiley Bogren, Rune Storvold, Stian Solbø, Christina A. Pedersen, and Sebastian Gerland
The Cryosphere, 11, 1575–1589, https://doi.org/10.5194/tc-11-1575-2017,https://doi.org/10.5194/tc-11-1575-2017, 2017
Short summary
Seasonal variability of atmospheric nitrogen oxides and non-methane hydrocarbons at the GEOSummit station, Greenland
L. J. Kramer, D. Helmig, J. F. Burkhart, A. Stohl, S. Oltmans, and R. E. Honrath
Atmos. Chem. Phys., 15, 6827–6849, https://doi.org/10.5194/acp-15-6827-2015,https://doi.org/10.5194/acp-15-6827-2015, 2015
A model sensitivity study of the impact of clouds on satellite detection and retrieval of volcanic ash
A. Kylling, N. Kristiansen, A. Stohl, R. Buras-Schnell, C. Emde, and J. Gasteiger
Atmos. Meas. Tech., 8, 1935–1949, https://doi.org/10.5194/amt-8-1935-2015,https://doi.org/10.5194/amt-8-1935-2015, 2015
Short summary
The Lagrangian particle dispersion model FLEXPART-WRF version 3.1
J. Brioude, D. Arnold, A. Stohl, M. Cassiani, D. Morton, P. Seibert, W. Angevine, S. Evan, A. Dingwell, J. D. Fast, R. C. Easter, I. Pisso, J. Burkhart, and G. Wotawa
Geosci. Model Dev., 6, 1889–1904, https://doi.org/10.5194/gmd-6-1889-2013,https://doi.org/10.5194/gmd-6-1889-2013, 2013
Simulation of SEVIRI infrared channels: a case study from the Eyjafjallajökull April/May 2010 eruption
A. Kylling, R. Buras, S. Eckhardt, C. Emde, B. Mayer, and A. Stohl
Atmos. Meas. Tech., 6, 649–660, https://doi.org/10.5194/amt-6-649-2013,https://doi.org/10.5194/amt-6-649-2013, 2013
Related subject area
Effect of snow microstructure variability on Ku-band radar snow water equivalent retrievals
Nick Rutter, Melody J. Sandells, Chris Derksen, Joshua King, Peter Toose, Leanne Wake, Tom Watts, Richard Essery, Alexandre Roy, Alain Royer, Philip Marsh, Chris Larsen, and Matthew Sturm
The Cryosphere, 13, 3045–3059, https://doi.org/10.5194/tc-13-3045-2019,https://doi.org/10.5194/tc-13-3045-2019, 2019
Short summary
Estimating the sea ice floe size distribution using satellite altimetry: theory, climatology, and model comparison
Christopher Horvat, Lettie A. Roach, Rachel Tilling, Cecilia M. Bitz, Baylor Fox-Kemper, Colin Guider, Kaitlin Hill, Andy Ridout, and Andrew Shepherd
The Cryosphere, 13, 2869–2885, https://doi.org/10.5194/tc-13-2869-2019,https://doi.org/10.5194/tc-13-2869-2019, 2019
Short summary
Regional influence of ocean–atmosphere teleconnections on the timing and duration of MODIS-derived snow cover in British Columbia, Canada
Alexandre R. Bevington, Hunter E. Gleason, Vanessa N. Foord, William C. Floyd, and Hardy P. Griesbauer
The Cryosphere, 13, 2693–2712, https://doi.org/10.5194/tc-13-2693-2019,https://doi.org/10.5194/tc-13-2693-2019, 2019
Short summary
Changes of the tropical glaciers throughout Peru between 2000 and 2016 – mass balance and area fluctuations
Thorsten Seehaus, Philipp Malz, Christian Sommer, Stefan Lippl, Alejo Cochachin, and Matthias Braun
The Cryosphere, 13, 2537–2556, https://doi.org/10.5194/tc-13-2537-2019,https://doi.org/10.5194/tc-13-2537-2019, 2019
Short summary
Suitability analysis of ski areas in China: an integrated study based on natural and socioeconomic conditions
Jie Deng, Tao Che, Cunde Xiao, Shijin Wang, Liyun Dai, and Akynbekkyzy Meerzhan
The Cryosphere, 13, 2149–2167, https://doi.org/10.5194/tc-13-2149-2019,https://doi.org/10.5194/tc-13-2149-2019, 2019
Short summary
The 2018 North Greenland polynya observed by a newly introduced merged optical and passive microwave sea-ice concentration dataset
Valentin Ludwig, Gunnar Spreen, Christian Haas, Larysa Istomina, Frank Kauker, and Dmitrii Murashkin
The Cryosphere, 13, 2051–2073, https://doi.org/10.5194/tc-13-2051-2019,https://doi.org/10.5194/tc-13-2051-2019, 2019
Short summary
Iceberg topography and volume classification using TanDEM-X interferometry
Dyre O. Dammann, Leif E. B. Eriksson, Son V. Nghiem, Erin C. Pettit, Nathan T. Kurtz, John G. Sonntag, Thomas E. Busche, Franz J. Meyer, and Andrew R. Mahoney
The Cryosphere, 13, 1861–1875, https://doi.org/10.5194/tc-13-1861-2019,https://doi.org/10.5194/tc-13-1861-2019, 2019
Short summary
Estimation of turbulent heat flux over leads using satellite thermal images
Meng Qu, Xiaoping Pang, Xi Zhao, Jinlun Zhang, Qing Ji, and Pei Fan
The Cryosphere, 13, 1565–1582, https://doi.org/10.5194/tc-13-1565-2019,https://doi.org/10.5194/tc-13-1565-2019, 2019
Short summary
Rapid retreat of permafrost coastline observed with aerial drone photogrammetry
Andrew M. Cunliffe, George Tanski, Boris Radosavljevic, William F. Palmer, Torsten Sachs, Hugues Lantuit, Jeffrey T. Kerby, and Isla H. Myers-Smith
The Cryosphere, 13, 1513–1528, https://doi.org/10.5194/tc-13-1513-2019,https://doi.org/10.5194/tc-13-1513-2019, 2019
Short summary
Broadband albedo of Arctic sea ice from MERIS optical data
Christine Pohl, Larysa Istomina, Steffen Tietsche, Evelyn Jäkel, Johannes Stapf, Gunnar Spreen, and Georg Heygster
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-62,https://doi.org/10.5194/tc-2019-62, 2019
Revised manuscript accepted for TC
Short summary
Instantaneous sea ice drift speed from TanDEM-X interferometry
Dyre Oliver Dammann, Leif E. B. Eriksson, Joshua M. Jones, Andrew R. Mahoney, Roland Romeiser, Franz J. Meyer, Hajo Eicken, and Yasushi Fukamachi
The Cryosphere, 13, 1395–1408, https://doi.org/10.5194/tc-13-1395-2019,https://doi.org/10.5194/tc-13-1395-2019, 2019
Short summary
Estimating the snow depth, the snow–ice interface temperature, and the effective temperature of Arctic sea ice using Advanced Microwave Scanning Radiometer 2 and ice mass balance buoy data
Lise Kilic, Rasmus Tage Tonboe, Catherine Prigent, and Georg Heygster
The Cryosphere, 13, 1283–1296, https://doi.org/10.5194/tc-13-1283-2019,https://doi.org/10.5194/tc-13-1283-2019, 2019
Short summary
Baffin Bay sea ice inflow and outflow: 1978–1979 to 2016–2017
Haibo Bi, Zehua Zhang, Yunhe Wang, Xiuli Xu, Yu Liang, Jue Huang, Yilin Liu, and Min Fu
The Cryosphere, 13, 1025–1042, https://doi.org/10.5194/tc-13-1025-2019,https://doi.org/10.5194/tc-13-1025-2019, 2019
Short summary
Sentinel-3 Delay-Doppler altimetry over Antarctica
Malcolm McMillan, Alan Muir, Andrew Shepherd, Roger Escolà, Mònica Roca, Jérémie Aublanc, Pierre Thibaut, Marco Restano, Américo Ambrozio, and Jérôme Benveniste
The Cryosphere, 13, 709–722, https://doi.org/10.5194/tc-13-709-2019,https://doi.org/10.5194/tc-13-709-2019, 2019
Short summary
The Reference Elevation Model of Antarctica
Ian M. Howat, Claire Porter, Benjamin E. Smith, Myoung-Jong Noh, and Paul Morin
The Cryosphere, 13, 665–674, https://doi.org/10.5194/tc-13-665-2019,https://doi.org/10.5194/tc-13-665-2019, 2019
Short summary
Characterizing the behaviour of surge- and non-surge-type glaciers in the Kingata Mountains, eastern Pamir, from 1999 to 2016
Mingyang Lv, Huadong Guo, Xiancai Lu, Guang Liu, Shiyong Yan, Zhixing Ruan, Yixing Ding, and Duncan J. Quincey
The Cryosphere, 13, 219–236, https://doi.org/10.5194/tc-13-219-2019,https://doi.org/10.5194/tc-13-219-2019, 2019
Short summary
Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records
Thomas Lavergne, Atle Macdonald Sørensen, Stefan Kern, Rasmus Tonboe, Dirk Notz, Signe Aaboe, Louisa Bell, Gorm Dybkjær, Steinar Eastwood, Carolina Gabarro, Georg Heygster, Mari Anne Killie, Matilde Brandt Kreiner, John Lavelle, Roberto Saldo, Stein Sandven, and Leif Toudal Pedersen
The Cryosphere, 13, 49–78, https://doi.org/10.5194/tc-13-49-2019,https://doi.org/10.5194/tc-13-49-2019, 2019
Short summary
Monitoring snow depth change across a range of landscapes with ephemeral snowpacks using structure from motion applied to lightweight unmanned aerial vehicle videos
Richard Fernandes, Christian Prevost, Francis Canisius, Sylvain G. Leblanc, Matt Maloley, Sarah Oakes, Kiyomi Holman, and Anders Knudby
The Cryosphere, 12, 3535–3550, https://doi.org/10.5194/tc-12-3535-2018,https://doi.org/10.5194/tc-12-3535-2018, 2018
Short summary
Multi-channel and multi-polarization radar measurements around the NEEM site
Jilu Li, Jose A. Vélez González, Carl Leuschen, Ayyangar Harish, Prasad Gogineni, Maurine Montagnat, Ilka Weikusat, Fernando Rodriguez-Morales, and John Paden
The Cryosphere, 12, 2689–2705, https://doi.org/10.5194/tc-12-2689-2018,https://doi.org/10.5194/tc-12-2689-2018, 2018
Short summary
On the reflectance spectroscopy of snow
Alexander Kokhanovsky, Maxim Lamare, Biagio Di Mauro, Ghislain Picard, Laurent Arnaud, Marie Dumont, François Tuzet, Carsten Brockmann, and Jason E. Box
The Cryosphere, 12, 2371–2382, https://doi.org/10.5194/tc-12-2371-2018,https://doi.org/10.5194/tc-12-2371-2018, 2018
Short summary
A new tracking algorithm for sea ice age distribution estimation
Anton Andreevich Korosov, Pierre Rampal, Leif Toudal Pedersen, Roberto Saldo, Yufang Ye, Georg Heygster, Thomas Lavergne, Signe Aaboe, and Fanny Girard-Ardhuin
The Cryosphere, 12, 2073–2085, https://doi.org/10.5194/tc-12-2073-2018,https://doi.org/10.5194/tc-12-2073-2018, 2018
Short summary
Warm winter, thin ice?
Julienne C. Stroeve, David Schroder, Michel Tsamados, and Daniel Feltham
The Cryosphere, 12, 1791–1809, https://doi.org/10.5194/tc-12-1791-2018,https://doi.org/10.5194/tc-12-1791-2018, 2018
Short summary
Cited articles
Anderson, G., Clough, S.,
Kneizys, F., Chetwynd, J., and Shettle, E.: AFGL atmospheric
constituent profiles (0–120 km), Hansom AFB,
Bedford, MA, 1986.
Aoki, T., Aoki, T., Fukabori, M.,
Hachikubo, A., Tachibana, Y., and Nishio, F.: Effects of snow
physical parameters on spectral albedo and bidirectional reflectance
of snow surface, J. Geophys. Res., 105, 10219–10236, 2000.
Bais, A. F., Kazadzis, S.,
Balis, D., Zerefos, C. S., and Blumthaler, M.: Correcting global
solar ultraviolet spectra recorded by a brewer spectroradiometer for
its angular response error, Appl. Optics, 37, 6339–6444, 1998.
Buras, R., Dowling, T., and
Emde, C.: New secondary-scattering correction in DISORT with
increased efficiency for forward
scattering, J. Quant. Spectrosc. Ra., 112, 2028–2034,
2011.
Dahlback, A. and
Stamnes, K.: A new spherical model for computing the radiation field
available for photolysis and heating at twilight, Planet. Space
Sci., 39, 671–683, 1991.
Emde, C., Buras-Schnell, R., Kylling, A., Mayer, B., Gasteiger, J., Hamann, U.,
Kylling, J., Richter, B., Pause, C., Dowling, T., and Bugliaro, L.: The
libRadtran software package for radiative transfer calculations (Version
2.0), Geosci. Model Dev. Discuss., 8, 10237–10303,
https://doi.org/10.5194/gmdd-8-10237-2015, 2015.
Gardner, A. S. and
Sharp, M. J.: A review of snow and ice albedo and the development of
a new physically based broadband albedo
parameterization, J. Geophys. Res., 115, 1–15,
2010.
Grenfell, T. C.,
Warren, S. G., and Mullen, P. C.: Reflection of solar radiation by
the Antarctic snow surface at ultraviolet, visible, and
near-infrared wavelengths, J. Geophys. Res., 99, 18669–18684,
1994.
Hu, Y. X. and K. Stamnes.:
An accurate parameterization of the radiative properties of water
clouds suitable for use in climate models,
J. Climate, 6, 728–742, 1993.
Kato, S., Ackerman, T. P.,
Mather, J. H. and Clothiaux, E. E.: The k-distribution method and
correlated-k approximation for a shortwave radiative transfer
model, J. Quant. Spectrosc. Ra., 62, 109–121,
1999.
Key, J. R., Yang, P., Baum, B. A., and Nasiri, S. L.: Parameterization of
shortwave ice cloud optical properties for various particle habits, J.
Geophys. Res., 107, D13, https://doi.org/10.1029/2001JD000742, 2002.
Kreuter, A., Buras, R., Mayer, B., Webb, A., Kift, R., Bais, A., Kouremeti, N.,
and Blumthaler, M.: Solar irradiance in the heterogeneous albedo environment
of the Arctic coast: measurements and a 3-D model study, Atmos.
Chem. Phys., 14, 5989–6002, https://doi.org/10.5194/acp-14-5989-2014, 2014.
Liang, S.: Narrowband to broadband
conversions of land surface albedo I Algorithms, Remote
Sens. Environ., 76, 213–238, 2001.
Long, C. N., Bucholtz, A.,
Jonsson, H., Schmid, H., Vogelmann, A., and Wood, J.: A method of
correcting for tilt from horizontal in downwelling shortwave
irradiance measurements on moving platforms, Open Atmos.
Sci. J., 4, 78–87, 2010.
Mayer, B. and Kylling, A.:
Technical note: The libRadtran software package for radiative
transfer calculations – description and examples of use,
Atmos. Chem. Phys., 5, 1855–1877,
2005.
Nicolaus, M.,
Hudson, S. R., Gerland, S., and Munderloh, K.: A modern concept for
autonomous and continuous measurements of spectral albedo and
transmittance of sea ice, Cold Reg. Sci. Technol., 62, 14–28,
2010.
Oerlemans, J. and
Klok, E. J.: Energy balance of a glacier surface: analysis of
automatic weather station data from the Morteratschgletscher,
Switzerland, Arct. Antarct. Alp. Res., 34, 477–485,
2002.
Perovich, D. K.,
Grenfell, T. C., Light, B., and Hobbs, P. V.: Seasonal evolution of
the albedo of multiyear Arctic sea ice, J. Geophys. Res., 107,
1–13,
2002.
Sellers, P. J.,
Meeson, B. W., Hall, F. G., Asrar, G., Murphy, R. E.,
Schiffer, R. A., Bretherton, F. P., Dickinson, R. E.,
Ellingson, R. G., Field, C. B., Huemmrich, K. F., Justice, C. O.,
Melack, J. M., Roulet, N. T., Schimel, D. S., and Try, P. D.: Remote
sensing of the land surface for studies of global change: models –
algorithms – experiments, Remote Sens. Environ., 51, 3–26,
1995.
Stamnes, K.,
Tsay, S.-C., Wiscombe, W., and Jayaweera, K.: Numerically stable
algorithm for discrete–ordinate–method radiative transfer in
multiple scattering and emitting layered media, Appl. Optics, 27,
2502–2509, 1988.
Steffen, K. and Box, J.:
Surface climatology of the Greenland ice sheet: Greenland climate
network 1995–1999, J. Geophys. Res., 106, 33951–33964, 2001.
Stroeve, J.-C.,
Box, J. E., Fowler, C., Haran, T., and Key, J.: Intercomparison
between in situ and AVHRR polar pathfinder-derived surface albedo
over greenland, Remote Sens. Environ., 75, 360–374, 2001.
Stroeve, J.-C., Box, J. E.,
Gao, F., Liang, S., Nolin, A., and Schaaf, C.: Accuracy assessment
of the MODIS 16-day albedo product for snow: comparisons with
Greenland in situ measurements, Remote Sens. Environ., 94, 46–60,
2005.
Stroeve, J., Box, J. E., Wang, Z., Schaaf, C., and Barrett, A.: Re-evaluation
of {MODIS} {MCD43} Greenland albedo accuracy and trends, Remote Sens.
Environ., 138, 199–214,
2013.
van Angelen, J. H.,
Lenaerts, J. T. M., Lhermitte, S., Fettweis, X.,
Kuipers Munneke, P., van den Broeke, M. R., van Meijgaard, E., and
Smeets, C. J. P. P.: Sensitivity of Greenland Ice Sheet surface mass
balance to surface albedo parameterization: a study with a regional
climate model, The Cryosphere, 6, 1175–1186,
https://doi.org/10.5194/tc-6-1175-2012, 2012.
Van As, D.: Warming, glacier melt and surface energy budget from weather
station observations in the Melville Bay region of northwest Greenland,
J. Glaciol., 57, 208–220, 2011.
Van de Wal, R. S. W.,
Greuell, W., Van den Broeke, M. R., Reijmer, C. H., and
Oerlemans, J.: Surface mass-balance observations and automatic
weather station data along a transect near Kangerlussuaq, West
Greenland, Ann. Glaciol., 42, 311–316, 2005.
Van den Broeke, M., Van
As, D., Reijmer, C., and Van de Wal, R.: Assessing and improving the
quality of unattended radiation observations in
Antarctica, J. Atmos. Ocean. Tech., 21, 1417–1431,
2004a.
Van den Broeke, M., Reijmer, C., and van de Wal, R.: Surface radiation
balance in Antarctica as measured with automatic weather stations, J.
Geophys. Res., 109, D09103, https://doi.org/10.1029/2003JD004394, 2004b.
Wang, W., Zender, C. S., van As, D., Smeets, P. C. J. P., and van den Broeke,
M. R.: A Retrospective, Iterative, Geometry-Based (RIGB) tilt correction
method for radiation observed by Automatic Weather Stations on snow-covered
surfaces: application to Greenland, The Cryosphere Discuss., 9, 6025–6060, https://doi.org/10.5194/tcd-9-6025-2015, 2015.
Weiser, U., Olefs, M., Schöner, W., Weyss, G., and Hynek, B.: Correction of
albedo measurements due to unknown geometry, The Cryosphere Discuss., 9, 2709–2744, https://doi.org/10.5194/tcd-9-2709-2015, 2015.