Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 11, issue 3
The Cryosphere, 11, 1091–1110, 2017
https://doi.org/10.5194/tc-11-1091-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 11, 1091–1110, 2017
https://doi.org/10.5194/tc-11-1091-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 05 May 2017

Research article | 05 May 2017

In situ continuous visible and near-infrared spectroscopy of an alpine snowpack

Marie Dumont et al.
Related authors  
Motion of dust particles in dry snow under temperature gradient metamorphism
Pascal Hagenmuller, Frederic Flin, Marie Dumont, François Tuzet, Isabel Peinke, Philippe Lapalus, Anne Dufour, Jacques Roulle, Laurent Pézard, Didier Voisin, Edward Ando, Sabine Rolland du Roscoat, and Pascal Charrier
The Cryosphere, 13, 2345–2359, https://doi.org/10.5194/tc-13-2345-2019,https://doi.org/10.5194/tc-13-2345-2019, 2019
Short summary
Snow albedo sensitivity to macroscopic surface roughness using a new ray tracing model
Fanny Larue, Ghislain Picard, Laurent Arnaud, Inès Ollivier, Clément Delcourt, Maxim Lamare, François Tuzet, Jesus Revuelto, and Marie Dumont
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-179,https://doi.org/10.5194/tc-2019-179, 2019
Manuscript under review for TC
Short summary
Influence of light-absorbing particles on snow spectral irradiance profiles
Francois Tuzet, Marie Dumont, Laurent Arnaud, Didier Voisin, Maxim Lamare, Fanny Larue, Jesus Revuelto, and Ghislain Picard
The Cryosphere, 13, 2169–2187, https://doi.org/10.5194/tc-13-2169-2019,https://doi.org/10.5194/tc-13-2169-2019, 2019
Short summary
Meteorological and evaluation datasets for snow modelling at 10 reference sites: description of in situ and bias-corrected reanalysis data
Cécile B. Ménard, Richard Essery, Alan Barr, Paul Bartlett, Jeff Derry, Marie Dumont, Charles Fierz, Hyungjun Kim, Anna Kontu, Yves Lejeune, Danny Marks, Masashi Niwano, Mark Raleigh, Libo Wang, and Nander Wever
Earth Syst. Sci. Data, 11, 865–880, https://doi.org/10.5194/essd-11-865-2019,https://doi.org/10.5194/essd-11-865-2019, 2019
Short summary
Saharan dust events in the European Alps: role in snowmelt and geochemical characterization
Biagio Di Mauro, Roberto Garzonio, Micol Rossini, Gianluca Filippa, Paolo Pogliotti, Marta Galvagno, Umberto Morra di Cella, Mirco Migliavacca, Giovanni Baccolo, Massimiliano Clemenza, Barbara Delmonte, Valter Maggi, Marie Dumont, François Tuzet, Matthieu Lafaysse, Samuel Morin, Edoardo Cremonese, and Roberto Colombo
The Cryosphere, 13, 1147–1165, https://doi.org/10.5194/tc-13-1147-2019,https://doi.org/10.5194/tc-13-1147-2019, 2019
Short summary
Related subject area  
Seasonal Snow
Spatiotemporal variability and decadal trends of snowmelt processes on Antarctic sea ice observed by satellite scatterometers
Stefanie Arndt and Christian Haas
The Cryosphere, 13, 1943–1958, https://doi.org/10.5194/tc-13-1943-2019,https://doi.org/10.5194/tc-13-1943-2019, 2019
Converting snow depth to snow water equivalent using climatological variables
David F. Hill, Elizabeth A. Burakowski, Ryan L. Crumley, Julia Keon, J. Michelle Hu, Anthony A. Arendt, Katreen Wikstrom Jones, and Gabriel J. Wolken
The Cryosphere, 13, 1767–1784, https://doi.org/10.5194/tc-13-1767-2019,https://doi.org/10.5194/tc-13-1767-2019, 2019
Short summary
Avalanches and micrometeorology driving mass and energy balance of the lowest perennial ice field of the Alps: a case study
Rebecca Mott, Andreas Wolf, Maximilian Kehl, Harald Kunstmann, Michael Warscher, and Thomas Grünewald
The Cryosphere, 13, 1247–1265, https://doi.org/10.5194/tc-13-1247-2019,https://doi.org/10.5194/tc-13-1247-2019, 2019
Short summary
The optical characteristics and sources of chromophoric dissolved organic matter (CDOM) in seasonal snow of northwestern China
Yue Zhou, Hui Wen, Jun Liu, Wei Pu, Qingcai Chen, and Xin Wang
The Cryosphere, 13, 157–175, https://doi.org/10.5194/tc-13-157-2019,https://doi.org/10.5194/tc-13-157-2019, 2019
Short summary
Brief Communication: Early season snowpack loss and implications for oversnow vehicle recreation travel planning
Benjamin J. Hatchett and Hilary G. Eisen
The Cryosphere, 13, 21–28, https://doi.org/10.5194/tc-13-21-2019,https://doi.org/10.5194/tc-13-21-2019, 2019
Short summary
Cited articles  
Arnaud, L., Picard, G., Champollion, N., Domine, F., Gallet, J.-C., Lefebvre, E., Fily, M., and Barnola, J.-M.: Measurement of vertical profiles of snow specific surface area with a 1 cm resolution using infrared reflectance: instrument description and validation, J. Glaciol., 57, 17–29, https://doi.org/10.3189/002214311795306664, 2011.
Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the Swiss avalanche warning: Part I: numerical model, Cold Reg. Sci. Technol., 3, 123–145, 2002.
Benedetti, A., Kaiser, J. W., and Morcrette, J. J.: Global Climate, Aerosols in: State of the Climate in 2010, B. Am. Meteorol. Soc., 92, S65–S67, 2011.
Bogren, W. S., Burkhart, J. F., and Kylling, A.: Tilt error in cryospheric surface radiation measurements at high latitudes: a model study, The Cryosphere, 10, 613–622, https://doi.org/10.5194/tc-10-613-2016, 2016.
Brun, E., Martin, E., Simon, V., Gendre, C., and Coléou, C.: An energy and mass model of snow cover suitable for operational avalanche forecasting, J. Glaciol., 35, 333–342, https://doi.org/10.3198/1989JoG35-121-333-342, 1989.
Publications Copernicus
Download
Short summary
Snow spectral albedo in the visible/near-infrared range has been continuously measured during a winter season at Col de Porte alpine site (French Alps; 45.30° N, 5.77°E; 1325 m a.s.l.). This study highlights that the variations of spectral albedo can be successfully explained by variations of the following snow surface variables: snow-specific surface area, effective light-absorbing impurities content, presence of liquid water and slope.
Snow spectral albedo in the visible/near-infrared range has been continuously measured during a...
Citation