Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 11, issue 3
The Cryosphere, 11, 1149–1172, 2017
https://doi.org/10.5194/tc-11-1149-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 11, 1149–1172, 2017
https://doi.org/10.5194/tc-11-1149-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 10 May 2017

Research article | 10 May 2017

A simple model for the evolution of melt pond coverage on permeable Arctic sea ice

Predrag Popović and Dorian Abbot
Related authors  
Sea-ice dynamics strongly promote Snowball Earth initiation and destabilize tropical sea-ice margins
A. Voigt and D. S. Abbot
Clim. Past, 8, 2079–2092, https://doi.org/10.5194/cp-8-2079-2012,https://doi.org/10.5194/cp-8-2079-2012, 2012
Related subject area  
Sea Ice
On the multi-fractal scaling properties of sea ice deformation
Pierre Rampal, Véronique Dansereau, Einar Olason, Sylvain Bouillon, Timothy Williams, and Abdoulaye Samaké
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-290,https://doi.org/10.5194/tc-2018-290, 2019
Revised manuscript accepted for TC
Short summary
Brief communication: Pancake ice floe size distribution during the winter expansion of the Antarctic marginal ice zone
Alberto Alberello, Miguel Onorato, Luke Bennetts, Marcello Vichi, Clare Eayrs, Keith MacHutchon, and Alessandro Toffoli
The Cryosphere, 13, 41–48, https://doi.org/10.5194/tc-13-41-2019,https://doi.org/10.5194/tc-13-41-2019, 2019
Short summary
What historical landfast ice observations tell us about projected ice conditions in Arctic archipelagoes and marginal seas under anthropogenic forcing
Frédéric Laliberté, Stephen E. L. Howell, Jean-François Lemieux, Frédéric Dupont, and Ji Lei
The Cryosphere, 12, 3577–3588, https://doi.org/10.5194/tc-12-3577-2018,https://doi.org/10.5194/tc-12-3577-2018, 2018
Short summary
Interannual sea ice thickness variability in the Bay of Bothnia
Iina Ronkainen, Jonni Lehtiranta, Mikko Lensu, Eero Rinne, Jari Haapala, and Christian Haas
The Cryosphere, 12, 3459–3476, https://doi.org/10.5194/tc-12-3459-2018,https://doi.org/10.5194/tc-12-3459-2018, 2018
Short summary
Improving Met Office seasonal predictions of Arctic sea ice using assimilation of CryoSat-2 thickness
Edward W. Blockley and K. Andrew Peterson
The Cryosphere, 12, 3419–3438, https://doi.org/10.5194/tc-12-3419-2018,https://doi.org/10.5194/tc-12-3419-2018, 2018
Short summary
Cited articles  
Abbot, D. S., Silber, M., and Pierrehumbert, R. T.: Bifurcations leading to summer Arctic sea ice loss, J. Geophys. Res., 116, D19120, https://doi.org/10.1029/2011JD015653, 2011.
Eicken, H., Grenfell, T. C., Perovich, D. K., Richter-Menge, J. A., and Frey, K.: Hydraulic controls of summer Arctic pack ice albedo, J. Geophys. Res., 109, C08007, https://doi.org/10.1029/2003JC001989, 2004.
Eisenman, I. and Wettlaufer, J. S.: Nonlinear threshold behavior during the loss of Arctic sea ice, P. Natl. Acad. Sci. USA, 106, 28–32, https://doi.org/10.1073/pnas.0806887106, 2008.
Flocco, D. and Feltham, D. L.: A continuum model of melt pond evolution on Arctic sea ice, J. Geophys. Res., 112, C08016, https://doi.org/10.1029/2006JC003836, 2007.
Flocco, D., Feltham, D. L., and Turner, A. K.: Incorporation of a physically based melt pond scheme into the sea ice component of a climate model, J. Geophys. Res., 115, C08012, https://doi.org/10.1029/2009jc005568, 2010.
Publications Copernicus
Download
Short summary
During summer, a large portion of sea ice in the Arctic is typically covered with meltwater. We present a simple model for the evolution of melt ponds on permeable sea ice that both fits observations and allows us to understand the behavior of melt ponds in a way that is often not possible with more complex models. We use this model to show that pond coverage will increase under global warming. This work is important as melt ponds affect the overall reflectance of sea ice.
During summer, a large portion of sea ice in the Arctic is typically covered with meltwater. We...
Citation