Research article
03 Jul 2017
Research article | 03 Jul 2017
SEMIC: an efficient surface energy and mass balance model applied to the Greenland ice sheet
Mario Krapp et al.
Related authors
The PRIMAP-hist national historical emissions time series
Johannes Gütschow, M. Louise Jeffery, Robert Gieseke, Ronja Gebel, David Stevens, Mario Krapp, and Marcia Rocha
Earth Syst. Sci. Data, 8, 571-603, https://doi.org/10.5194/essd-8-571-2016,https://doi.org/10.5194/essd-8-571-2016, 2016
Short summary
Simulation of the future sea level contribution of Greenland with a new glacial system model
Reinhard Calov, Sebastian Beyer, Ralf Greve, Johanna Beckmann, Matteo Willeit, Thomas Kleiner, Martin Rückamp, Angelika Humbert, and Andrey Ganopolski
The Cryosphere, 12, 3097-3121, https://doi.org/10.5194/tc-12-3097-2018,https://doi.org/10.5194/tc-12-3097-2018, 2018
Short summary
The PRIMAP-hist national historical emissions time series
Johannes Gütschow, M. Louise Jeffery, Robert Gieseke, Ronja Gebel, David Stevens, Mario Krapp, and Marcia Rocha
Earth Syst. Sci. Data, 8, 571-603, https://doi.org/10.5194/essd-8-571-2016,https://doi.org/10.5194/essd-8-571-2016, 2016
Short summary
Related subject area
Glacio-hydrological melt and run-off modelling: application of a limits of acceptability framework for model comparison and selection
Jonathan D. Mackay, Nicholas E. Barrand, David M. Hannah, Stefan Krause, Christopher R. Jackson, Jez Everest, and Guðfinna Aðalgeirsdóttir
The Cryosphere, 12, 2175-2210, https://doi.org/10.5194/tc-12-2175-2018,https://doi.org/10.5194/tc-12-2175-2018, 2018
Short summary
Shifted energy fluxes, increased Bowen ratios, and reduced thaw depths linked with drainage-induced changes in permafrost ecosystem structure
Mathias Göckede, Fanny Kittler, Min Jung Kwon, Ina Burjack, Martin Heimann, Olaf Kolle, Nikita Zimov, and Sergey Zimov
The Cryosphere, 11, 2975-2996, https://doi.org/10.5194/tc-11-2975-2017,https://doi.org/10.5194/tc-11-2975-2017, 2017
Short summary
Evaluation of different methods to model near-surface turbulent fluxes for a mountain glacier in the Cariboo Mountains, BC, Canada
Valentina Radić, Brian Menounos, Joseph Shea, Noel Fitzpatrick, Mekdes A. Tessema, and Stephen J. Déry
The Cryosphere, 11, 2897-2918, https://doi.org/10.5194/tc-11-2897-2017,https://doi.org/10.5194/tc-11-2897-2017, 2017
Short summary
Quantifying bioalbedo: a new physically based model and discussion of empirical methods for characterising biological influence on ice and snow albedo
Joseph M. Cook, Andrew J. Hodson, Alex S. Gardner, Mark Flanner, Andrew J. Tedstone, Christopher Williamson, Tristram D. L. Irvine-Fynn, Johan Nilsson, Robert Bryant, and Martyn Tranter
The Cryosphere, 11, 2611-2632, https://doi.org/10.5194/tc-11-2611-2017,https://doi.org/10.5194/tc-11-2611-2017, 2017
Short summary
The importance of accurate glacier albedo for estimates of surface mass balance on Vatnajökull: evaluating the surface energy budget in a regional climate model with automatic weather station observations
Louise Steffensen Schmidt, Guðfinna Aðalgeirsdóttir, Sverrir Guðmundsson, Peter L. Langen, Finnur Pálsson, Ruth Mottram, Simon Gascoin, and Helgi Björnsson
The Cryosphere, 11, 1665-1684, https://doi.org/10.5194/tc-11-1665-2017,https://doi.org/10.5194/tc-11-1665-2017, 2017
Short summary
Surface-layer turbulence, energy balance and links to atmospheric circulations over a mountain glacier in the French Alps
Maxime Litt, Jean-Emmanuel Sicart, Delphine Six, Patrick Wagnon, and Warren D. Helgason
The Cryosphere, 11, 971-987, https://doi.org/10.5194/tc-11-971-2017,https://doi.org/10.5194/tc-11-971-2017, 2017
Short summary
A Retrospective, Iterative, Geometry-Based (RIGB) tilt-correction method for radiation observed by automatic weather stations on snow-covered surfaces: application to Greenland
Wenshan Wang, Charles S. Zender, Dirk van As, Paul C. J. P. Smeets, and Michiel R. van den Broeke
The Cryosphere, 10, 727-741, https://doi.org/10.5194/tc-10-727-2016,https://doi.org/10.5194/tc-10-727-2016, 2016
Short summary
Changing surface–atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland
C. Charalampidis, D. van As, J. E. Box, M. R. van den Broeke, W. T. Colgan, S. H. Doyle, A. L. Hubbard, M. MacFerrin, H. Machguth, and C. J. P. P. Smeets
The Cryosphere, 9, 2163-2181, https://doi.org/10.5194/tc-9-2163-2015,https://doi.org/10.5194/tc-9-2163-2015, 2015
Processes governing the mass balance of Chhota Shigri Glacier (western Himalaya, India) assessed by point-scale surface energy balance measurements
M. F. Azam, P. Wagnon, C. Vincent, AL. Ramanathan, V. Favier, A. Mandal, and J. G. Pottakkal
The Cryosphere, 8, 2195-2217, https://doi.org/10.5194/tc-8-2195-2014,https://doi.org/10.5194/tc-8-2195-2014, 2014
Short summary
Representing moisture fluxes and phase changes in glacier debris cover using a reservoir approach
E. Collier, L. I. Nicholson, B. W. Brock, F. Maussion, R. Essery, and A. B. G. Bush
The Cryosphere, 8, 1429-1444, https://doi.org/10.5194/tc-8-1429-2014,https://doi.org/10.5194/tc-8-1429-2014, 2014
Updated cloud physics in a regional atmospheric climate model improves the modelled surface energy balance of Antarctica
J. M. van Wessem, C. H. Reijmer, J. T. M. Lenaerts, W. J. van de Berg, M. R. van den Broeke, and E. van Meijgaard
The Cryosphere, 8, 125-135, https://doi.org/10.5194/tc-8-125-2014,https://doi.org/10.5194/tc-8-125-2014, 2014
Modeling energy and mass balance of Shallap Glacier, Peru
W. Gurgiser, B. Marzeion, L. Nicholson, M. Ortner, and G. Kaser
The Cryosphere, 7, 1787-1802, https://doi.org/10.5194/tc-7-1787-2013,https://doi.org/10.5194/tc-7-1787-2013, 2013
Micrometeorological conditions and surface mass and energy fluxes on Lewis Glacier, Mt Kenya, in relation to other tropical glaciers
L. I. Nicholson, R. Prinz, T. Mölg, and G. Kaser
The Cryosphere, 7, 1205-1225, https://doi.org/10.5194/tc-7-1205-2013,https://doi.org/10.5194/tc-7-1205-2013, 2013
Snow spectral albedo at Summit, Greenland: measurements and numerical simulations based on physical and chemical properties of the snowpack
C. M. Carmagnola, F. Domine, M. Dumont, P. Wright, B. Strellis, M. Bergin, J. Dibb, G. Picard, Q. Libois, L. Arnaud, and S. Morin
The Cryosphere, 7, 1139-1160, https://doi.org/10.5194/tc-7-1139-2013,https://doi.org/10.5194/tc-7-1139-2013, 2013
High-resolution interactive modelling of the mountain glacier–atmosphere interface: an application over the Karakoram
E. Collier, T. Mölg, F. Maussion, D. Scherer, C. Mayer, and A. B. G. Bush
The Cryosphere, 7, 779-795, https://doi.org/10.5194/tc-7-779-2013,https://doi.org/10.5194/tc-7-779-2013, 2013
Borehole temperatures reveal a changed energy budget at Mill Island, East Antarctica, over recent decades
J. L. Roberts, A. D. Moy, T. D. van Ommen, M. A. J. Curran, A. P. Worby, I. D. Goodwin, and M. Inoue
The Cryosphere, 7, 263-273, https://doi.org/10.5194/tc-7-263-2013,https://doi.org/10.5194/tc-7-263-2013, 2013
Simulating melt, runoff and refreezing on Nordenskiöldbreen, Svalbard, using a coupled snow and energy balance model
W. J. J. van Pelt, J. Oerlemans, C. H. Reijmer, V. A. Pohjola, R. Pettersson, and J. H. van Angelen
The Cryosphere, 6, 641-659, https://doi.org/10.5194/tc-6-641-2012,https://doi.org/10.5194/tc-6-641-2012, 2012
Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula
P. Kuipers Munneke, M. R. van den Broeke, J. C. King, T. Gray, and C. H. Reijmer
The Cryosphere, 6, 353-363, https://doi.org/10.5194/tc-6-353-2012,https://doi.org/10.5194/tc-6-353-2012, 2012
Large surface meltwater discharge from the Kangerlussuaq sector of the Greenland ice sheet during the record-warm year 2010 explained by detailed energy balance observations
D. van As, A. L. Hubbard, B. Hasholt, A. B. Mikkelsen, M. R. van den Broeke, and R. S. Fausto
The Cryosphere, 6, 199-209, https://doi.org/10.5194/tc-6-199-2012,https://doi.org/10.5194/tc-6-199-2012, 2012
The role of radiation penetration in the energy budget of the snowpack at Summit, Greenland
P. Kuipers Munneke, M. R. van den Broeke, C. H. Reijmer, M. M. Helsen, W. Boot, M. Schneebeli, and K. Steffen
The Cryosphere, 3, 155-165, https://doi.org/10.5194/tc-3-155-2009,https://doi.org/10.5194/tc-3-155-2009, 2009
Cited articles
Bougamont, M., Bamber, J., Ridley, J., Gladstone, R., Greuell, W., Hanna, E., Payne, A., and Rutt, I.: Impact of model physics on estimating the surface mass balance of the Greenland ice sheet, Geophys. Res. Lett., 34, L17501, https://doi.org/10.1029/2007GL030700, 2007.
Calov, R., Ganopolski, A., Claussen, M., Petoukhov, V., and Greve, R.: Transient simulation of the last glacial inception, Part I: glacial inception as a bifurcation in the climate system, Clim. Dynam., 24, 545–561, https://doi.org/10.1007/s00382-005-0007-6, 2005.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Fettweis, X., Franco, B., Tedesco, M., van Angelen, J. H., Lenaerts, J. T. M., van den Broeke, M. R., and Gallée, H.: Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR, The Cryosphere, 7, 469–489, https://doi.org/10.5194/tc-7-469-2013, 2013.
Fettweis, X., Box, J. E., Agosta, C., Amory, C., Kittel, C., Lang, C., van As, D., Machguth, H., and Gallée, H.: Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model, The Cryosphere, 11, 1015–1033, https://doi.org/10.5194/tc-11-1015-2017, 2017.
Fitzgerald, P. W., Bamber, J. L., Ridley, J. K., and Rougier, J. C.: Exploration of parametric uncertainty in a surface mass balance model applied to the Greenland ice sheet, J. Geophys. Res., 117, F01021, https://doi.org/10.1029/2011JF002067, 2012.
Franco, B., Fettweis, X., and Erpicum, M.: Future projections of the Greenland ice sheet energy balance driving the surface melt, The Cryosphere, 7, 1–18, https://doi.org/10.5194/tc-7-1-2013, 2013.
Gill, A. E.: Atmosphere-Ocean Dynamics, International Geophysics Series, Academic Press, New York, Vol. 30, 1982.
Hanna, E., Navarro, F. J., Pattyn, F., Domingues, C. M., Fettweis, X., Ivins, E. R., Nicholls, R. J., Ritz, C., Smith, B., Tulaczyk, S., Whitehouse, P. L., and Zwally, H. J.: Ice-sheet mass balance and climate change, Nature, 498, 51–59, https://doi.org/10.1038/nature12238, 2013.
Heinemann, M., Timmermann, A., Elison Timm, O., Saito, F., and Abe-Ouchi, A.: Deglacial ice sheet meltdown: orbital pacemaking and CO
2 effects, Clim. Past, 10, 1567–1579, https://doi.org/10.5194/cp-10-1567-2014, 2014.
Krapp, M.: Model Code, https://doi.org/10.17605/OSF.IO/5PUX2, last access: 16 May 2017a.
Krapp, M.: Model Data, https://doi.org/10.17605/OSF.IO/A3VH2, 16 May 2017b.
Krapp, M.: SEMIC: Surface Energy and mass balance model of intermediate complexity, GitHub repository, available at: https://github.com/mkrapp/semic, 2017c.
Morin, S., Lejeune, Y., Lesaffre, B., Panel, J.-M., Poncet, D., David, P., and Sudul, M.: An 18-yr long (1993–2011) snow and meteorological dataset from a mid-altitude mountain site (Col de Porte, France, 1325 m alt.) for driving and evaluating snowpack models, Earth Syst. Sci. Data, 4, 13–21, https://doi.org/10.5194/essd-4-13-2012, 2012.
Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., and Wilbanks, T. J.: The next generation of scenarios for climate change research and assessment, Nature, 463, 747–756, https://doi.org/10.1038/nature08823, 2010.
Nghiem, S. V., Hall, D. K., Mote, T. L., Tedesco, M., Albert, M. R., Keegan, K., Shuman, C. A., DiGirolamo, N. E., and Neumann, G.: The extreme melt across the Greenland ice sheet in 2012, Geophys. Res. Lett., 39, L20502, https://doi.org/10.1029/2012GL053611, 2012.
Noël, B., van de Berg, W. J., van Meijgaard, E., Kuipers Munneke, P., van de Wal, R. S. W., and van den Broeke, M. R.: Evaluation of the updated regional climate model RACMO2.3: summer snowfall impact on the Greenland Ice Sheet, The Cryosphere, 9, 1831–1844, https://doi.org/10.5194/tc-9-1831-2015, 2015.
Oerlemans, J.: The mass balance of the Greenland ice sheet: sensitivity to climate change as revealed by energy-balance modelling, The Holocene, 1, 40–48, https://doi.org/10.1177/095968369100100106, 1991.
Oerlemans, J. and Knap, W.: A 1 year record of global radiation and albedo in the ablation zone of Morteratschgletscher, Switzerland, J. Glaciol., 44, 231–238, https://doi.org/10.3198/1998JoG44-147-231-238, 1998.
Ohmura, A.: Physical Basis for the Temperature-Based Melt-Index Method, J. Appl. Meteorol., 40, 753–761, https://doi.org/10.1175/1520-0450(2001)040<0753:PBFTTB>2.0.CO;2, 2001.
Poli, R., Kennedy, J., and Blackwell, T.: Particle swarm optimization, Swarm Intelligence, 1, 33–57, https://doi.org/10.1007/s11721-007-0002-0, 2007.
Reeh, N.: Parameterization of melt rate and surface temperature on the Greenland ice sheet, Polarforschung, 59, 113–128, 1991.
Reijmer, C. H., van den Broeke, M. R., Fettweis, X., Ettema, J., and Stap, L. B.: Refreezing on the Greenland ice sheet: a comparison of parameterizations, The Cryosphere, 6, 743–762, https://doi.org/10.5194/tc-6-743-2012, 2012.
Robinson, A. and Goelzer, H.: The importance of insolation changes for paleo ice sheet modeling, The Cryosphere, 8, 1419–1428, https://doi.org/10.5194/tc-8-1419-2014, 2014.
Robinson, A., Calov, R., and Ganopolski, A.: An efficient regional energy-moisture balance model for simulation of the Greenland Ice Sheet response to climate change, The Cryosphere, 4, 129–144, https://doi.org/10.5194/tc-4-129-2010, 2010.
Slater, A., Pitman, A., and Desborough, C.: The validation of a snow parameterization designed for use in general circulation models, International J. Climatol., 18, 595–617, https://doi.org/10.1002/(SICI)1097-0088(199805)18:6<595::AID-JOC275>3.0.CO;2-O, 1998.
Taylor, K. E.: Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res.-Atmos., 106, 7183–7192, https://doi.org/10.1029/2000JD900719, 2001.
Thomas, R., Frederick, E., Li, J., Krabill, W., Manizade, S., Paden, J., Sonntag, J., Swift, R., and Yungel, J.: Accelerating ice loss from the fastest Greenland and Antarctic glaciers, Geophys. Res. Lett., 38, L10502, https://doi.org/10.1029/2011GL047304, 2011.
van As, D., Fausto, R. S., Cappelen, J., van de Wal, R. S., Braithwaite, R. J., Machguth, H., Charalampidis, C., Box, J. E., Solgaard, A. M., Ahlstrøm, A. P., Haubner, K., Citterio M., and Andersen, S. B.: Placing Greenland ice sheet ablation measurements in a multi-decadal context, Geol. Surv. Denm. Greenl., 35, 71–74, 2016.
van de Berg, W., van den Broeke, M., Ettema, J., van Meijgaard, E., and Kaspar, F.: Significant contribution of insolation to Eemian melting of the Greenland ice sheet, Nat. Geosci., 4, 679–683, https://doi.org/10.1038/ngeo1245, 2011.
van den Broeke, M., Bamber, J., Ettema, J., Rignot, E., Schrama, E., van de Berg, W., van Meijgaard, E., Velicogna, I., and Wouters, B.: Partitioning Recent Greenland Mass Loss, Science, 326, 984–986, https://doi.org/10.1126/science.1178176, 2009.
Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Le Moigne, P., Martin, E., and Willemet, J.-M.: The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2, Geosci. Model Dev., 5, 773–791, https://doi.org/10.5194/gmd-5-773-2012, 2012.