Journal metrics

Journal metrics

  • IF value: 4.524 IF 4.524
  • IF 5-year value: 5.558 IF 5-year 5.558
  • CiteScore value: 4.84 CiteScore 4.84
  • SNIP value: 1.425 SNIP 1.425
  • SJR value: 3.034 SJR 3.034
  • IPP value: 4.65 IPP 4.65
  • h5-index value: 52 h5-index 52
  • Scimago H index value: 55 Scimago H index 55
Volume 11, issue 6 | Copyright
The Cryosphere, 11, 2743-2753, 2017
https://doi.org/10.5194/tc-11-2743-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 05 Dec 2017

Research article | 05 Dec 2017

Centuries of intense surface melt on Larsen C Ice Shelf

Suzanne L. Bevan et al.
Related authors
Observationally constrained surface mass balance of Larsen C ice shelf, Antarctica
Peter Kuipers Munneke, Daniel McGrath, Brooke Medley, Adrian Luckman, Suzanne Bevan, Bernd Kulessa, Daniela Jansen, Adam Booth, Paul Smeets, Bryn Hubbard, David Ashmore, Michiel Van den Broeke, Heidi Sevestre, Konrad Steffen, Andrew Shepherd, and Noel Gourmelen
The Cryosphere, 11, 2411-2426, https://doi.org/10.5194/tc-11-2411-2017,https://doi.org/10.5194/tc-11-2411-2017, 2017
Brief Communication: Newly developing rift in Larsen C Ice Shelf presents significant risk to stability
D. Jansen, A. J. Luckman, A. Cook, S. Bevan, B. Kulessa, B. Hubbard, and P. R. Holland
The Cryosphere, 9, 1223-1227, https://doi.org/10.5194/tc-9-1223-2015,https://doi.org/10.5194/tc-9-1223-2015, 2015
Glacier dynamics at Helheim and Kangerdlugssuaq glaciers, southeast Greenland, since the Little Ice Age
S. A. Khan, K. K. Kjeldsen, K. H. Kjær, S. Bevan, A. Luckman, A. Aschwanden, A. A. Bjørk, N. J. Korsgaard, J. E. Box, M. van den Broeke, T. M. van Dam, and A. Fitzner
The Cryosphere, 8, 1497-1507, https://doi.org/10.5194/tc-8-1497-2014,https://doi.org/10.5194/tc-8-1497-2014, 2014
Response of vegetation to the 2003 European drought was mitigated by height
S. L. Bevan, S. O. Los, and P. R. J. North
Biogeosciences, 11, 2897-2908, https://doi.org/10.5194/bg-11-2897-2014,https://doi.org/10.5194/bg-11-2897-2014, 2014
Related subject area
Antarctic
Bathymetric controls on calving processes at Pine Island Glacier
Jan Erik Arndt, Robert D. Larter, Peter Friedl, Karsten Gohl, Kathrin Höppner, and the Science Team of Expedition PS104
The Cryosphere, 12, 2039-2050, https://doi.org/10.5194/tc-12-2039-2018,https://doi.org/10.5194/tc-12-2039-2018, 2018
Archival processes of the water stable isotope signal in East Antarctic ice cores
Mathieu Casado, Amaelle Landais, Ghislain Picard, Thomas Münch, Thomas Laepple, Barbara Stenni, Giuliano Dreossi, Alexey Ekaykin, Laurent Arnaud, Christophe Genthon, Alexandra Touzeau, Valerie Masson-Delmotte, and Jean Jouzel
The Cryosphere, 12, 1745-1766, https://doi.org/10.5194/tc-12-1745-2018,https://doi.org/10.5194/tc-12-1745-2018, 2018
Tidal bending of ice shelves as a mechanism for large-scale temporal variations in ice flow
Sebastian H. R. Rosier and G. Hilmar Gudmundsson
The Cryosphere, 12, 1699-1713, https://doi.org/10.5194/tc-12-1699-2018,https://doi.org/10.5194/tc-12-1699-2018, 2018
Where is the 1-million-year-old ice at Dome A?
Liyun Zhao, John C. Moore, Bo Sun, Xueyuan Tang, and Xiaoran Guo
The Cryosphere, 12, 1651-1663, https://doi.org/10.5194/tc-12-1651-2018,https://doi.org/10.5194/tc-12-1651-2018, 2018
A new digital elevation model of Antarctica derived from CryoSat-2 altimetry
Thomas Slater, Andrew Shepherd, Malcolm McMillan, Alan Muir, Lin Gilbert, Anna E. Hogg, Hannes Konrad, and Tommaso Parrinello
The Cryosphere, 12, 1551-1562, https://doi.org/10.5194/tc-12-1551-2018,https://doi.org/10.5194/tc-12-1551-2018, 2018
Cited articles
Abram, N. J., Mulvaney, R., Wolff, E. W., Triest, J., Kipfstuhl, S., Trusel, L. D., Vimeux, F., Fleet, L., and Arrowsmith, C.: Acceleration of snow melt in an Antarctic Peninsula ice core during the twentieth century, Nat. Geosci., 6, 404–411, https://doi.org/10.1038/ngeo1787, 2013.
Ashmore, D. W., Hubbard, B., Luckman, A., Kulessa, B., Bevan, S., Booth, A., Munneke, P. K., and O'Leary, M.: Ice and firn hetereogeneity within Larsen C Ice Shelf from borehole optical televiewing, J. Geophys. Res.-Earth, 122, 1139–1153, https://doi.org/10.1002/2016JF004047, 2017.
Banwell, A. F. and MacAyeal, D. R.: Ice-shelf fracture due to viscoelastic flexure stress induced by fill/drain cycles of supraglacial lakes, Antarct. Sci., 27, 587–597, https://doi.org/10.1017/s0954102015000292, 2015.
Barrand, N. E., Vaughan, D. G., Steiner, N., Tedesco, M., Kuipers Munneke, P., van den Broeke, M. R., and Hosking, J. S.: Trends in Antarctic Peninsula surface melting conditions from observations and regional climate modeling, J. Geophys. Res.-Earth, 118, 315–330, https://doi.org/10.1029/2012jf002559, 2013.
Bevan, S.: Flow-line model code for accumulation of ice along velocity-based trajectories, https://doi.org/10.5285/0cea12bf-2f44-4d48-99d1-e7d303c5e80e, 2017a.
Publications Copernicus
Download
Short summary
Five 90 m boreholes drilled into an Antarctic Peninsula ice shelf show units of ice that are denser than expected and must have formed from refrozen surface melt which has been buried and transported downstream. We used surface flow speeds and snow accumulation rates to work out where and when these units formed. Results show that, as well as recent surface melt, a period of strong melt occurred during the 18th century. Surface melt is thought to be a factor in causing recent ice-shelf break-up.
Five 90 m boreholes drilled into an Antarctic Peninsula ice shelf show units of ice that are...
Citation
Share