Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
The Cryosphere, 11, 2815-2827, 2017
https://doi.org/10.5194/tc-11-2815-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
11 Dec 2017
Surface lowering of the debris-covered area of Kanchenjunga Glacier in the eastern Nepal Himalaya since 1975, as revealed by Hexagon KH-9 and ALOS satellite observations
Damodar Lamsal1,a, Koji Fujita1, and Akiko Sakai1 1Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8601, Japan
anow at: Asia Air Survey Co., Ltd., Kanagawa 215-0004, Japan
Abstract. This study presents the geodetic mass balance of Kanchenjunga Glacier, one of the largest debris-covered glaciers in the easternmost Nepal Himalaya, which possesses a negative mass balance of −0.18 ± 0.17 m w.e. a−1 for the 1975–2010 study period, estimated using digital elevation models (DEMs) generated from Hexagon KH-9 and ALOS PRISM stereo images. Accurate DEMs, with a relative uncertainty of ±5.5 m, were generated from the intensive and manual editing of triangulated irregular network (TIN) models on a stereo MirrorTM/3D Monitor. The glacier ice-flow velocity field was also calculated using a feature-tracking method that was applied to two ALOS orthoimages taken in 2010. The elevation differences between the two DEMs highlight considerable surface lowering across the debris-covered area, and a slight thickening in the accumulation area of Kanchenjunga Glacier between 1975 and 2010. The magnitude and gradient of surface lowering are similar among the six glacier tributaries, even though they are situated at different elevations, which may reflect variations in the ice-flow velocity field. The pattern of surface lowering correlates well with the ice-flow velocity field over the debris-covered portion of the main tributary, suggesting that the glacier dynamics significantly affect surface lowering by altering the emergence velocity along the glacier, particularly in the compressive ablation area. Surface-lowering patterns partially correspond to the supraglacial pond area fraction of the glacier, with enhanced surface lowering observed in areas that possess a larger pond area fraction. These findings support the hypothesis that supraglacial ponds may intensify ice wastage and play a key role in the heterogeneous surface lowering of debris-covered glaciers. The estimated mass loss of Kanchenjunga Glacier is moderate compared with other debris-covered glaciers in neighboring Himalayan regions, which may be due to the lower pond area fraction of Kanchenjunga Glacier relative to other glaciers.

Citation: Lamsal, D., Fujita, K., and Sakai, A.: Surface lowering of the debris-covered area of Kanchenjunga Glacier in the eastern Nepal Himalaya since 1975, as revealed by Hexagon KH-9 and ALOS satellite observations, The Cryosphere, 11, 2815-2827, https://doi.org/10.5194/tc-11-2815-2017, 2017.
Publications Copernicus
Download
Short summary
This study presents the geodetic mass balance of Kanchenjunga Glacier, a heavily debris-covered glacier in the easternmost Nepal Himalaya, between 1975 and 2010 using high-resolution DEMs. The rate of elevation change positively correlates with elevation and glacier velocity, and significant surface lowering is observed at supraglacial ponds. A difference in pond density would strongly affect the different geodetic mass balances of the Kanchenjunga and Khumbu glaciers.
This study presents the geodetic mass balance of Kanchenjunga Glacier, a heavily debris-covered...
Share