Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 12, issue 4
The Cryosphere, 12, 1307–1329, 2018
https://doi.org/10.5194/tc-12-1307-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
The Cryosphere, 12, 1307–1329, 2018
https://doi.org/10.5194/tc-12-1307-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 12 Apr 2018

Research article | 12 Apr 2018

Open-source algorithm for detecting sea ice surface features in high-resolution optical imagery

Nicholas C. Wright and Chris M. Polashenski

Related authors

Observations of Sea Ice Melt from Operation IceBridge Imagery
Nicholas C. Wright, Chris M. Polashenski, Scott T. McMichael, and Ross A. Beyer
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-288,https://doi.org/10.5194/tc-2019-288, 2019
Preprint under review for TC
Short summary

Related subject area

Discipline: Sea ice | Subject: Remote Sensing
Effects of decimetre-scale surface roughness on L-band brightness temperature of sea ice
Maciej Miernecki, Lars Kaleschke, Nina Maaß, Stefan Hendricks, and Sten Schmidl Søbjærg
The Cryosphere, 14, 461–476, https://doi.org/10.5194/tc-14-461-2020,https://doi.org/10.5194/tc-14-461-2020, 2020
Brief communication: Conventional assumptions involving the speed of radar waves in snow introduce systematic underestimates to sea ice thickness and seasonal growth rate estimates
Robbie D. C. Mallett, Isobel R. Lawrence, Julienne C. Stroeve, Jack C. Landy, and Michel Tsamados
The Cryosphere, 14, 251–260, https://doi.org/10.5194/tc-14-251-2020,https://doi.org/10.5194/tc-14-251-2020, 2020
Short summary
Broadband albedo of Arctic sea ice from MERIS optical data
Christine Pohl, Larysa Istomina, Steffen Tietsche, Evelyn Jäkel, Johannes Stapf, Gunnar Spreen, and Georg Heygster
The Cryosphere, 14, 165–182, https://doi.org/10.5194/tc-14-165-2020,https://doi.org/10.5194/tc-14-165-2020, 2020
Short summary
Satellite passive microwave sea-ice concentration data set intercomparison: closed ice and ship-based observations
Stefan Kern, Thomas Lavergne, Dirk Notz, Leif Toudal Pedersen, Rasmus Tage Tonboe, Roberto Saldo, and Atle MacDonald Sørensen
The Cryosphere, 13, 3261–3307, https://doi.org/10.5194/tc-13-3261-2019,https://doi.org/10.5194/tc-13-3261-2019, 2019
Short summary
Estimating the sea ice floe size distribution using satellite altimetry: theory, climatology, and model comparison
Christopher Horvat, Lettie A. Roach, Rachel Tilling, Cecilia M. Bitz, Baylor Fox-Kemper, Colin Guider, Kaitlin Hill, Andy Ridout, and Andrew Shepherd
The Cryosphere, 13, 2869–2885, https://doi.org/10.5194/tc-13-2869-2019,https://doi.org/10.5194/tc-13-2869-2019, 2019
Short summary

Cited articles

Arntsen, A. E., Song, A. J., Perovich, D. K., and Richter-Menge, J. A.: Observations of the summer breakup of an Arctic sea ice cover, Geophys. Res. Lett., 42, 8057–8063, https://doi.org/10.1002/2015GL065224, 2015.
Blaschke, T.: Object based image analysis for remote sensing, ISPRS J. Photogramm. Remote Sens., 65, 2–16, https://doi.org/10.1016/j.isprsjprs.2009.06.004, 2010.
Blaschke, T., Hay, G. J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Queiroz Feitosa, R., van der Meer, F., van der Werff, H., van Coillie, F., and Tiede, D.: Geographic Object-Based Image Analysis – Towards a new paradigm, ISPRS J. Photogramm. Remote Sens., 87, 180–191, https://doi.org/10.1016/j.isprsjprs.2013.09.014, 2014.
Breiman, L.: Bagging Predictors, Mach. Learn., 24, 123–140, https://doi.org/10.1023/A:1018054314350, 1996.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
Publications Copernicus
Download
Short summary
Satellites, planes, and drones capture thousands of images of the Arctic sea ice cover each year. However, few methods exist to reliably and automatically process these images for scientifically usable information. In this paper, we take the next step towards a community standard for analyzing these images by presenting an open-source platform able to accurately classify sea ice imagery into several important surface types.
Satellites, planes, and drones capture thousands of images of the Arctic sea ice cover each...
Citation