Articles | Volume 12, issue 5
https://doi.org/10.5194/tc-12-1767-2018
https://doi.org/10.5194/tc-12-1767-2018
Research article
 | 
25 May 2018
Research article |  | 25 May 2018

Seasonal variations of the backscattering coefficient measured by radar altimeters over the Antarctic Ice Sheet

Fifi Ibrahime Adodo, Frédérique Remy, and Ghislain Picard

Related authors

Triggers of the 2022 Larsen B multi-year landfast sea ice breakout and initial glacier response
Naomi E. Ochwat, Ted A. Scambos, Alison F. Banwell, Robert S. Anderson, Michelle L. Maclennan, Ghislain Picard, Julia A. Shates, Sebastian Marinsek, Liliana Margonari, Martin Truffer, and Erin C. Pettit
The Cryosphere, 18, 1709–1731, https://doi.org/10.5194/tc-18-1709-2024,https://doi.org/10.5194/tc-18-1709-2024, 2024
Short summary
Surface processes and drivers of the snow water stable isotopic composition at Dome C, East Antarctica – a multi-datasets and modelling analysis
Inès Ollivier, Hans Christian Steen-Larsen, Barbara Stenni, Laurent Arnaud, Mathieu Casado, Alexandre Cauquoin, Giuliano Dreossi, Christophe Genthon, Bénédicte Minster, Ghislain Picard, Martin Werner, and Amaëlle Landais
EGUsphere, https://doi.org/10.5194/egusphere-2024-685,https://doi.org/10.5194/egusphere-2024-685, 2024
Short summary
Forward modelling of synthetic-aperture radar (SAR) backscatter during lake ice melt conditions using the Snow Microwave Radiative Transfer (SMRT) model
Justin Murfitt, Claude Duguay, Ghislain Picard, and Juha Lemmetyinen
The Cryosphere, 18, 869–888, https://doi.org/10.5194/tc-18-869-2024,https://doi.org/10.5194/tc-18-869-2024, 2024
Short summary
Time series of alpine snow surface radiative temperature maps from high precision thermal infrared imaging
Sara Arioli, Ghislain Picard, Laurent Arnaud, Simon Gascoin, Esteban Alonso-González, Marine Poizat, and Mark Irvine
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-55,https://doi.org/10.5194/essd-2024-55, 2024
Preprint under review for ESSD
Short summary
Extreme events of snow grain size increase in East Antarctica and their relationship with meteorological conditions
Claudio Stefanini, Giovanni Macelloni, Marion Leduc-Leballeur, Vincent Favier, Benjamin Pohl, and Ghislain Picard
The Cryosphere, 18, 593–608, https://doi.org/10.5194/tc-18-593-2024,https://doi.org/10.5194/tc-18-593-2024, 2024
Short summary

Related subject area

Discipline: Ice sheets | Subject: Remote Sensing
Sentinel-1 Detection of Ice Slabs on the Greenland Ice Sheet
Riley Culberg, Roger J. Michaelides, and Julie Z. Miller
EGUsphere, https://doi.org/10.5194/egusphere-2023-2652,https://doi.org/10.5194/egusphere-2023-2652, 2023
Short summary
Mapping the extent of giant Antarctic icebergs with deep learning
Anne Braakmann-Folgmann, Andrew Shepherd, David Hogg, and Ella Redmond
The Cryosphere, 17, 4675–4690, https://doi.org/10.5194/tc-17-4675-2023,https://doi.org/10.5194/tc-17-4675-2023, 2023
Short summary
Mapping Antarctic crevasses and their evolution with deep learning applied to satellite radar imagery
Trystan Surawy-Stepney, Anna E. Hogg, Stephen L. Cornford, and David C. Hogg
The Cryosphere, 17, 4421–4445, https://doi.org/10.5194/tc-17-4421-2023,https://doi.org/10.5194/tc-17-4421-2023, 2023
Short summary
AutoTerm: an automated pipeline for glacier terminus extraction using machine learning and a “big data” repository of Greenland glacier termini
Enze Zhang, Ginny Catania, and Daniel T. Trugman
The Cryosphere, 17, 3485–3503, https://doi.org/10.5194/tc-17-3485-2023,https://doi.org/10.5194/tc-17-3485-2023, 2023
Short summary
Recent changes in drainage route and outburst magnitude of the Russell Glacier ice-dammed lake, West Greenland
Mads Dømgaard, Kristian K. Kjeldsen, Flora Huiban, Jonathan L. Carrivick, Shfaqat A. Khan, and Anders A. Bjørk
The Cryosphere, 17, 1373–1387, https://doi.org/10.5194/tc-17-1373-2023,https://doi.org/10.5194/tc-17-1373-2023, 2023
Short summary

Cited articles

Allison, I., Alley, R. B., Fricker, H. A., Thomas, R. H., and Warner, R. C.: Ice sheet mass balance and sea level, Antarct. Sci., 21, 413–426, 2009. 
Armitage, T. W. K., Wingham, D. J., and Ridout, A. L.: Meteorological Origin of the Static Crossover Pattern Present in Low-Resolution-Mode CryoSat-2 Data Over Central Antarctica, IEEE Geosci. Remote Sens. Lett., 11, 1295–1299, https://doi.org/10.1109/LGRS.2013.2292821, 2014. 
Arthern, R. J., Wingham, D. J., and Ridout, A. L.: Controls on ERS altimeter measurements over ice sheets: Footprint-scale topography, backscatter fluctuations, and the dependence of microwave penetration depth on satellite orientation, J. Geophys. Res.-Atmos., 106, 33471–33484, 2001. 
Bingham, A. W. and Drinkwater, M. R.: Recent changes in the microwave scattering properties of the Antarctic ice sheet, IEEE Trans. Geosci. Remote Sens., 38, 1810–1820, https://doi.org/10.1109/36.851765, 2000. 
Brenner, A. C., DiMarzio, J. P., and Zwally, H. J.: Precision and accuracy of satellite radar and laser altimeter data over the continental ice sheets, IEEE Trans. Geosci. Remote Sens., 45, 321–331, 2007. 
Download
Short summary
In Antarctica, the seasonal cycle of the backscatter behaves differently at high and low frequencies, peaking in winter and in summer, respectively. At the intermediate frequency, some areas behave analogously to low frequency in terms of the seasonal cycle, but other areas behave analogously to high frequency. This calls into question the empirical relationships often used to correct elevation changes from radar penetration into the snowpack using backscatter.