Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
TC | Volume 12, issue 6
The Cryosphere, 12, 1957–1968, 2018
https://doi.org/10.5194/tc-12-1957-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
The Cryosphere, 12, 1957–1968, 2018
https://doi.org/10.5194/tc-12-1957-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 11 Jun 2018

Research article | 11 Jun 2018

Microtopographic control on the ground thermal regime in ice wedge polygons

Charles J. Abolt et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Charles Abolt on behalf of the Authors (30 Apr 2018)  Author's response    Manuscript
ED: Publish subject to minor revisions (review by editor) (15 May 2018) by Peter Morse
AR by Charles Abolt on behalf of the Authors (22 May 2018)  Author's response    Manuscript
ED: Publish subject to technical corrections (24 May 2018) by Peter Morse
Publications Copernicus
Download
Short summary
We investigate the relationship between ice wedge polygon topography and near-surface ground temperature using a combination of field work and numerical modeling. We analyze a year-long record of ground temperature across a low-centered polygon, then demonstrate that lower rims and deeper troughs promote warmer conditions in the ice wedge in winter. This finding implies that ice wedge cracking and growth, which are driven by cold conditions, can be impeded by rim erosion or trough subsidence.
We investigate the relationship between ice wedge polygon topography and near-surface ground...
Citation