Journal metrics

Journal metrics

  • IF value: 4.524 IF 4.524
  • IF 5-year value: 5.558 IF 5-year 5.558
  • CiteScore value: 4.84 CiteScore 4.84
  • SNIP value: 1.425 SNIP 1.425
  • SJR value: 3.034 SJR 3.034
  • IPP value: 4.65 IPP 4.65
  • h5-index value: 52 h5-index 52
  • Scimago H index value: 55 Scimago H index 55
Volume 12, issue 6 | Copyright
The Cryosphere, 12, 2159-2165, 2018
https://doi.org/10.5194/tc-12-2159-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 27 Jun 2018

Research article | 27 Jun 2018

Sunlight, clouds, sea ice, albedo, and the radiative budget: the umbrella versus the blanket

Donald K. Perovich Donald K. Perovich
  • Thayer School of Engineering, Dartmouth College, Hanover, 03755, USA

Abstract. The surface radiation budget of the Arctic Ocean plays a central role in summer ice melt and is governed by clouds and surface albedo. I calculated the net radiation flux for a range of albedos under sunny and cloudy skies and determined the break-even value, where the net radiation is the same for cloudy and sunny skies. Break-even albedos range from 0.30 in September to 0.58 in July. For snow-covered or bare ice, sunny skies always result in less radiative heat input. In contrast, leads always have, and ponds usually have, more radiative input under sunny skies than cloudy skies. Snow-covered ice has a net radiation flux that is negative or near zero under sunny skies, resulting in radiative cooling. Areally averaged albedos for sea ice in July result in a smaller net radiation flux under cloudy skies. For May, June, August, and September, the net radiation is smaller under sunny skies.

Download & links
Publications Copernicus
Download
Short summary
The balance of longwave and shortwave radiation plays a central role in the summer melt of Arctic sea ice. It is governed by clouds and surface albedo. The basic question is what causes more melting, sunny skies or cloudy skies. It depends on the albedo of the ice surface. For snow-covered or bare ice, sunny skies always result in less radiative heat input. In contrast, the open ocean always has, and melt ponds usually have, more radiative input under sunny skies than cloudy skies.
The balance of longwave and shortwave radiation plays a central role in the summer melt of...
Citation
Share