Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
TC | Volume 12, issue 7
The Cryosphere, 12, 2249–2266, 2018
https://doi.org/10.5194/tc-12-2249-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
The Cryosphere, 12, 2249–2266, 2018
https://doi.org/10.5194/tc-12-2249-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 12 Jul 2018

Research article | 12 Jul 2018

Simulated retreat of Jakobshavn Isbræ since the Little Ice Age controlled by geometry

Nadine Steiger et al.
Data sets

Flowline model output for Jakobshavn Isbræ from 1850-2014 with different changes in forcing parameters N. Steiger, K. Nisancioglu, H. Åkesson, B. de Fleurian, and F. Nick https://doi.org/10.11582/2018.00018

Publications Copernicus
Download
Short summary
We use an ice flow model to reconstruct the retreat of Jakobshavn Isbræ since 1850, forced by increased ocean warming and calving. Fjord geometry governs locations of rapid retreat: narrow and shallow areas act as intermittent pinning points for decades, followed by delayed rapid retreat without additional climate warming. These areas may be used to locate potential moraine buildup. Evidently, historic retreat and geometric influences have to be analyzed individually for each glacier system.
We use an ice flow model to reconstruct the retreat of Jakobshavn Isbræ since 1850, forced by...
Citation