Articles | Volume 12, issue 10
https://doi.org/10.5194/tc-12-3187-2018
https://doi.org/10.5194/tc-12-3187-2018
Research article
 | 
05 Oct 2018
Research article |  | 05 Oct 2018

A statistical fracture model for Antarctic ice shelves and glaciers

Veronika Emetc, Paul Tregoning, Mathieu Morlighem, Chris Borstad, and Malcolm Sambridge

Related authors

A statistical fracture model for Antarctic glaciers
Veronika Emetc, Paul Tregoning, and Malcolm Sambridge
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-98,https://doi.org/10.5194/tc-2017-98, 2017
Preprint withdrawn
Short summary

Related subject area

Discipline: Ice sheets | Subject: Ice Sheets
Assessing the potential for ice flow piracy between the Totten and Vanderford glaciers, East Antarctica
Felicity S. McCormack, Jason L. Roberts, Bernd Kulessa, Alan Aitken, Christine F. Dow, Lawrence Bird, Benjamin K. Galton-Fenzi, Katharina Hochmuth, Richard S. Jones, Andrew N. Mackintosh, and Koi McArthur
The Cryosphere, 17, 4549–4569, https://doi.org/10.5194/tc-17-4549-2023,https://doi.org/10.5194/tc-17-4549-2023, 2023
Short summary
Stagnant ice and age modelling in the Dome C region, Antarctica
Ailsa Chung, Frédéric Parrenin, Daniel Steinhage, Robert Mulvaney, Carlos Martín, Marie G. P. Cavitte, David A. Lilien, Veit Helm, Drew Taylor, Prasad Gogineni, Catherine Ritz, Massimo Frezzotti, Charles O'Neill, Heinrich Miller, Dorthe Dahl-Jensen, and Olaf Eisen
The Cryosphere, 17, 3461–3483, https://doi.org/10.5194/tc-17-3461-2023,https://doi.org/10.5194/tc-17-3461-2023, 2023
Short summary
Evaluation of the role of the Baltic depression during deglaciation of the last Scandinavian Ice Sheet; a landform-driven investigation
Izabela Szuman, Jakub Z. Kalita, Christiaan R. Diemont, Stephen J. Livingstone, Chris D. Clark, and Martin Margold
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-107,https://doi.org/10.5194/tc-2023-107, 2023
Preprint under review for TC
Short summary
Polar firn properties in Greenland and Antarctica and related effects on microwave brightness temperatures
Haokui Xu, Brooke Medley, Leung Tsang, Joel T. Johnson, Kenneth C. Jezek, Macro Brogioni, and Lars Kaleschke
The Cryosphere, 17, 2793–2809, https://doi.org/10.5194/tc-17-2793-2023,https://doi.org/10.5194/tc-17-2793-2023, 2023
Short summary
A model of the weathering crust and microbial activity on an ice-sheet surface
Tilly Woods and Ian J. Hewitt
The Cryosphere, 17, 1967–1987, https://doi.org/10.5194/tc-17-1967-2023,https://doi.org/10.5194/tc-17-1967-2023, 2023
Short summary

Cited articles

Albrecht, T. and Levermann, A.: Fracture-induced softening for large-scale ice dynamics, The Cryosphere, 8, 587–605, https://doi.org/10.5194/tc-8-587-2014, 2014. a, b
Åström, J. A., Riikilä, T. I., Tallinen, T., Zwinger, T., Benn, D., Moore, J. C., and Timonen, J.: A particle based simulation model for glacier dynamics, The Cryosphere, 7, 1591–1602, https://doi.org/10.5194/tc-7-1591-2013, 2013. a, b
Bassis, J. and Jacobs, S.: Diverse calving patterns linked to glacier geometry, Nat. Geosci., 6, 833–836, 2013. a
Bassis, J. and Walker, C.: Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice, P. Roy. Soc. A-Math. Phy., 468, 913–931, 2012. a, b
Download
Short summary
The paper includes a model that can be used to predict zones of fracture formation in both floating and grounded ice in Antarctica. We used observations and a statistics-based model to predict fractures in most ice shelves in Antarctica as an alternative to the damage-based approach. We can predict the location of observed fractures with an average success rate of 84% for grounded ice and 61% for floating ice and mean overestimation error of 26% and 20%, respectively.