Articles | Volume 12, issue 2
https://doi.org/10.5194/tc-12-491-2018
https://doi.org/10.5194/tc-12-491-2018
Research article
 | 
08 Feb 2018
Research article |  | 08 Feb 2018

Crustal heat production and estimate of terrestrial heat flow in central East Antarctica, with implications for thermal input to the East Antarctic ice sheet

John W. Goodge

Related authors

Facility for testing ice drills
Dennis L. Nielson, Chris Delahunty, John W. Goodge, and Jeffery P. Severinghaus
Sci. Dril., 22, 29–33, https://doi.org/10.5194/sd-22-29-2017,https://doi.org/10.5194/sd-22-29-2017, 2017
Short summary

Related subject area

Antarctic
Seasonal and interannual variability of the landfast ice mass balance between 2009 and 2018 in Prydz Bay, East Antarctica
Na Li, Ruibo Lei, Petra Heil, Bin Cheng, Minghu Ding, Zhongxiang Tian, and Bingrui Li
The Cryosphere, 17, 917–937, https://doi.org/10.5194/tc-17-917-2023,https://doi.org/10.5194/tc-17-917-2023, 2023
Short summary
Antarctic sea ice regime shift associated with decreasing zonal symmetry in the Southern Annular Mode
Serena Schroeter, Terence J. O'Kane, and Paul A. Sandery
The Cryosphere, 17, 701–717, https://doi.org/10.5194/tc-17-701-2023,https://doi.org/10.5194/tc-17-701-2023, 2023
Short summary
Evolution of the dynamics, area, and ice production of the Amundsen Sea Polynya, Antarctica, 2016–2021
Grant J. Macdonald, Stephen F. Ackley, Alberto M. Mestas-Nuñez, and Adrià Blanco-Cabanillas
The Cryosphere, 17, 457–476, https://doi.org/10.5194/tc-17-457-2023,https://doi.org/10.5194/tc-17-457-2023, 2023
Short summary
Megadunes in Antarctica: migration and characterization from remote and in situ observations
Giacomo Traversa, Davide Fugazza, and Massimo Frezzotti
The Cryosphere, 17, 427–444, https://doi.org/10.5194/tc-17-427-2023,https://doi.org/10.5194/tc-17-427-2023, 2023
Short summary
Slowdown of Shirase Glacier, East Antarctica, caused by strengthening alongshore winds
Bertie W. J. Miles, Chris R. Stokes, Adrian Jenkins, Jim R. Jordan, Stewart S. R. Jamieson, and G. Hilmar Gudmundsson
The Cryosphere, 17, 445–456, https://doi.org/10.5194/tc-17-445-2023,https://doi.org/10.5194/tc-17-445-2023, 2023
Short summary

Cited articles

Aitken, A. R. A., Young, D. A., Ferraccioli, F., Betts, P. G., Greenbaum, J. S., Richter, T. G., Roberts, J. L., Blankenship, D. D., and Siegert, M. J.: The subglacial geology of Wilkes Land, East Antarctica, Geophys. Res. Lett., 41, 2390–2400, https://doi.org/10.1002/2014GL059405, 2014.
An, M., Wiens, D.A., Zhao, Y., Feng, M., Nyblade, A., Kanao, M., Li, Y., Maggi, A., and Lèvêque, J.-J.: Temperature, lithosphere-asthenosphere boundary, and heat flux beneath the Antarctic Plate inferred from seismic velocities, J. Geophys. Res.-Sol. Ea., 120, 8720–8742, https://doi.org/10.1002/2015JB011917, 2015.
Artemieva, I. M., Thybo, H., Jakobsen, K., Sørensen, N. K., and Nielsen, L. S. K.: Heat production in granitic rocks: Global analysis based on a new data compilation GRANITE2017, Earth Sci. Rev., 172, 1–26, 2017.
Begeman, C. B., Tulaczyk, S. M., and Fisher, A. T.: Spatially variable geothermal heat flux in West Antarctica: Evidence and implications, Geophys. Res. Lett., 44, 9823–9832, https://doi.org/10.1002/2017GL075579, 2017.
Bo, S., Siegert, M. J., Mudd, S. M., Sugden, D., Fujita, S., Xiangbin, C., Yunyun, J., Xueyuan, T., and Yuansheng, L.: The Gamburtsev Mountains and the origin and early evolution of the Antarctic Ice Sheet, Nature, 459, 690–693, https://doi.org/10.1038/nature08024, 2009.
Download
Short summary
This paper presents geochemical data from a suite of glacially eroded igneous rock clasts sampled from Antarctica to estimate both crustal heat production and heat flow for the continental interior. The results indicate that the interior of East Antarctica is underlain by Proterozoic continental lithosphere of average surface heat flow, providing first-order constraints on both geodynamic history and ice-sheet stability.