Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
TC | Volume 13, issue 6
The Cryosphere, 13, 1565–1582, 2019
https://doi.org/10.5194/tc-13-1565-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
The Cryosphere, 13, 1565–1582, 2019
https://doi.org/10.5194/tc-13-1565-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 04 Jun 2019

Research article | 04 Jun 2019

Estimation of turbulent heat flux over leads using satellite thermal images

Meng Qu et al.
Viewed  
Total article views: 842 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
571 260 11 842 7 7
  • HTML: 571
  • PDF: 260
  • XML: 11
  • Total: 842
  • BibTeX: 7
  • EndNote: 7
Views and downloads (calculated since 25 Jan 2019)
Cumulative views and downloads (calculated since 25 Jan 2019)
Viewed (geographical distribution)  
Total article views: 474 (including HTML, PDF, and XML) Thereof 472 with geography defined and 2 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved (final revised paper)  
No saved metrics found.
Saved (discussion paper)  
No saved metrics found.
Discussed (final revised paper)  
No discussed metrics found.
Discussed (discussion paper)  
No discussed metrics found.
Latest update: 21 Oct 2019
Publications Copernicus
Download
Short summary
Can we ignore the contribution of small ice leads when estimating turbulent heat flux? Combining bulk formulae and a fetch-limited model with surface temperature from MODIS and Landsat-8 Thermal Infrared Sensor (TIRS) images, we found small leads account for 25 % of the turbulent heat flux, due to its large total area. Estimated turbulent heat flux is larger from TIRS than that from MODIS with a coarser resolution and larger using a fetch-limited model than that using bulk formulae.
Can we ignore the contribution of small ice leads when estimating turbulent heat flux? Combining...
Citation