Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
  • CiteScore value: 5.27 CiteScore
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
TC | Volume 13, issue 6
The Cryosphere, 13, 1565–1582, 2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
The Cryosphere, 13, 1565–1582, 2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 04 Jun 2019

Research article | 04 Jun 2019

Estimation of turbulent heat flux over leads using satellite thermal images

Meng Qu et al.
Related authors  
Sea ice kinematic features in the Arctic outflow region and their associations with Arctic Northeast Passage accessibility
Dawei Gui, Xiaoping Pang, Ruibo Lei, Xi Zhao, and Jia Wang
Abstr. Int. Cartogr. Assoc., 1, 101,,, 2019
Mapping of the maritime jurisdiction for Arctic Navigation
Haiyan Liu and Xiaoping Pang
Abstr. Int. Cartogr. Assoc., 1, 221,,, 2019
Comparison of Leads Mapping in the Arctic Ocean Between Landsat and MODIS Ice Surface Temperature Products
Xiaoping Pang, Pei Fan, Xi Zhao, and Qing Ji
Abstr. Int. Cartogr. Assoc., 1, 289,,, 2019
Rapid decline of Arctic sea ice volume: Causes and consequences
Jean-Claude Gascard, Jinlun Zhang, and Mehrad Rafizadeh
The Cryosphere Discuss.,,, 2019
Revised manuscript not accepted
Short summary
Related subject area  
Discipline: Sea ice | Subject: Remote Sensing
The 2018 North Greenland polynya observed by a newly introduced merged optical and passive microwave sea-ice concentration dataset
Valentin Ludwig, Gunnar Spreen, Christian Haas, Larysa Istomina, Frank Kauker, and Dmitrii Murashkin
The Cryosphere, 13, 2051–2073,,, 2019
Short summary
Snow-driven uncertainty in CryoSat-2-derived Antarctic sea ice thickness – insights from McMurdo Sound
Daniel Price, Iman Soltanzadeh, Wolfgang Rack, and Ethan Dale
The Cryosphere, 13, 1409–1422,,, 2019
Short summary
Instantaneous sea ice drift speed from TanDEM-X interferometry
Dyre Oliver Dammann, Leif E. B. Eriksson, Joshua M. Jones, Andrew R. Mahoney, Roland Romeiser, Franz J. Meyer, Hajo Eicken, and Yasushi Fukamachi
The Cryosphere, 13, 1395–1408,,, 2019
Short summary
Estimating the snow depth, the snow–ice interface temperature, and the effective temperature of Arctic sea ice using Advanced Microwave Scanning Radiometer 2 and ice mass balance buoy data
Lise Kilic, Rasmus Tage Tonboe, Catherine Prigent, and Georg Heygster
The Cryosphere, 13, 1283–1296,,, 2019
Short summary
Assessment of contemporary satellite sea ice thickness products for Arctic sea ice
Heidi Sallila, Sinéad Louise Farrell, Joshua McCurry, and Eero Rinne
The Cryosphere, 13, 1187–1213,,, 2019
Short summary
Cited articles  
Alam, A. and Curry, J. A.: Determination of surface turbulent fluxes over leads in Arctic sea ice, J. Geophys. Res.-Oceans, 102, 3331–3343, 1997. 
Alam, A. and Curry, J. A.: Evolution of new ice and turbulent fluxes over freezing winter leads, J. Geophys. Res.-Oceans, 103, 15783–15802, 1998. 
Andreas, E. L. and Cash, B. A.: Convective heat transfer over wintertime leads and polynyas, J. Geophys. Res.-Oceans, 104, 25721–25734, 1999. 
Andreas, E. L. and Murphy, B.: Bulk transfer coefficients for heat and momentum over leads and polynyas, J. Phys. Oceanogr., 16, 1875–1883, 1986. 
Andreas, E. L., Paulson, C. A., William, R. M., Lindsay, R. W., and Businger, J. A.: The turbulent heat flux from Arctic leads, Bound.-Lay. Meteorol., 17, 57–91, 1979. 
Publications Copernicus
Short summary
Can we ignore the contribution of small ice leads when estimating turbulent heat flux? Combining bulk formulae and a fetch-limited model with surface temperature from MODIS and Landsat-8 Thermal Infrared Sensor (TIRS) images, we found small leads account for 25 % of the turbulent heat flux, due to its large total area. Estimated turbulent heat flux is larger from TIRS than that from MODIS with a coarser resolution and larger using a fetch-limited model than that using bulk formulae.
Can we ignore the contribution of small ice leads when estimating turbulent heat flux? Combining...