Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
TC | Volume 13, issue 7
The Cryosphere, 13, 1819–1842, 2019
https://doi.org/10.5194/tc-13-1819-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
The Cryosphere, 13, 1819–1842, 2019
https://doi.org/10.5194/tc-13-1819-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 09 Jul 2019

Research article | 09 Jul 2019

Development of physically based liquid water schemes for Greenland firn-densification models

Vincent Verjans et al.
Related authors  
The Community Firn Model (CFM) v1.0
C. Max Stevens, Vincent Verjans, Jessica M.D. Lundin, Emma C. Kahle, Annika N. Horlings, Brita I. Horlings, and Edwin D. Waddington
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-361,https://doi.org/10.5194/gmd-2019-361, 2020
Manuscript under review for GMD
Short summary
Bayesian calibration of firn densification models
Vincent Verjans, Amber Alexandra Leeson, Christopher Nemeth, C. Max Stevens, Peter Kuipers Munneke, Brice Noël, and Jan Melchior van Wessem
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-274,https://doi.org/10.5194/tc-2019-274, 2020
Manuscript under review for TC
Short summary
Related subject area  
Discipline: Ice sheets | Subject: Numerical Modelling
Simulated retreat of Jakobshavn Isbræ during the 21st century
Xiaoran Guo, Liyun Zhao, Rupert M. Gladstone, Sainan Sun, and John C. Moore
The Cryosphere, 13, 3139–3153, https://doi.org/10.5194/tc-13-3139-2019,https://doi.org/10.5194/tc-13-3139-2019, 2019
Parameter sensitivity analysis of dynamic ice sheet models-Numerical computations
Gong Cheng and Per Lötstedt
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-151,https://doi.org/10.5194/tc-2019-151, 2019
Revised manuscript accepted for TC
Short summary
Regional grid refinement in an Earth system model: impacts on the simulated Greenland surface mass balance
Leonardus van Kampenhout, Alan M. Rhoades, Adam R. Herrington, Colin M. Zarzycki, Jan T. M. Lenaerts, William J. Sacks, and Michiel R. van den Broeke
The Cryosphere, 13, 1547–1564, https://doi.org/10.5194/tc-13-1547-2019,https://doi.org/10.5194/tc-13-1547-2019, 2019
Short summary
initMIP-Antarctica: an ice sheet model initialization experiment of ISMIP6
Hélène Seroussi, Sophie Nowicki, Erika Simon, Ayako Abe-Ouchi, Torsten Albrecht, Julien Brondex, Stephen Cornford, Christophe Dumas, Fabien Gillet-Chaulet, Heiko Goelzer, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Thomas Kleiner, Eric Larour, Gunter Leguy, William H. Lipscomb, Daniel Lowry, Matthias Mengel, Mathieu Morlighem, Frank Pattyn, Anthony J. Payne, David Pollard, Stephen F. Price, Aurélien Quiquet, Thomas J. Reerink, Ronja Reese, Christian B. Rodehacke, Nicole-Jeanne Schlegel, Andrew Shepherd, Sainan Sun, Johannes Sutter, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, and Tong Zhang
The Cryosphere, 13, 1441–1471, https://doi.org/10.5194/tc-13-1441-2019,https://doi.org/10.5194/tc-13-1441-2019, 2019
Short summary
Modeling the response of northwest Greenland to enhanced ocean thermal forcing and subglacial discharge
Mathieu Morlighem, Michael Wood, Hélène Seroussi, Youngmin Choi, and Eric Rignot
The Cryosphere, 13, 723–734, https://doi.org/10.5194/tc-13-723-2019,https://doi.org/10.5194/tc-13-723-2019, 2019
Short summary
Cited articles  
Anderson, E. A.: A point energy and mass balance model of a snow cover, NOAA Tech. Rep. NWS, 19, 1976. 
Arthern, R. J., Vaughan, D. G., Rankin, A. M., Mulvaney, R., and Thomas, E. R.: In situ measurements of Antarctic snow compaction compared with predictions of models, J. Geophys. Res.-Earth Surf., 115, 1–12, https://doi.org/10.1029/2009JF001306, 2010. 
Avanzi, F., Hirashima, H., Yamaguchi, S., Katsushima, T., and De Michele, C.: Observations of capillary barriers and preferential flow in layered snow during cold laboratory experiments, The Cryosphere., 10, 2013–2026, https://doi.org/10.5194/tc-10-2013-2016, 2016. 
Calonne, N., Geindreau, C., Flin, F., Morin, S., Lesaffre, B., Rolland Du Roscoat, S., and Charrier, P.: 3-D image-based numerical computations of snow permeability: Links to specific surface area, density, and microstructural anisotropy, The Cryosphere, 6, 939–951, https://doi.org/10.5194/tc-6-939-2012, 2012. 
Coléou, C. and Lesaffre, B.: Irreducible water saturation in snow: experimental results in a cold laboratory, Ann. Glaciol., 26, 64–68, https://doi.org/10.3189/1998AoG26-1-64-68, 1998. 
Publications Copernicus
Download
Short summary
Firn models rely on empirical approaches for representing the percolation and refreezing of meltwater through the firn column. We develop liquid water schemes of different levels of complexity for firn models and compare their performances with respect to observations of density profiles from Greenland. Our results demonstrate that physically advanced water schemes do not lead to better agreement with density observations. Uncertainties in other processes contribute more to model discrepancy.
Firn models rely on empirical approaches for representing the percolation and refreezing of...
Citation