Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
TC | Volume 13, issue 3
The Cryosphere, 13, 943–954, 2019
https://doi.org/10.5194/tc-13-943-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
The Cryosphere, 13, 943–954, 2019
https://doi.org/10.5194/tc-13-943-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 19 Mar 2019

Research article | 19 Mar 2019

Evaluation of CloudSat snowfall rate profiles by a comparison with in situ micro-rain radar observations in East Antarctica

Florentin Lemonnier et al.
Related authors  
Learning about the vertical structure of radar reflectivity using hydrometeor classes and neural networks in the Swiss Alps
Floor van den Heuvel, Loris Foresti, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-374,https://doi.org/10.5194/amt-2019-374, 2019
Manuscript under review for AMT
Short summary
Snowfall distribution and its response to the Arctic Oscillation: an evaluation of HighResMIP models in the Arctic using CPR/CloudSat observations
Manu Anna Thomas, Abhay Devasthale, Tristan L'Ecuyer, Shiyu Wang, Torben Koenigk, and Klaus Wyser
Geosci. Model Dev., 12, 3759–3772, https://doi.org/10.5194/gmd-12-3759-2019,https://doi.org/10.5194/gmd-12-3759-2019, 2019
Short summary
A numerical modelling study of the physical mechanisms causing radiation to accelerate tropical cyclogenesisand cause diurnal cycles
Melville E. Nicholls, Warren P. Smith, Roger A. Pielke Sr., Stephen M. Saleeby, and Norman B. Wood
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-569,https://doi.org/10.5194/acp-2019-569, 2019
Manuscript under review for ACP
Short summary
Validation metrics for ice edge position forecasts
Arne Melsom, Cyril Palerme, and Malte Müller
Ocean Sci., 15, 615–630, https://doi.org/10.5194/os-15-615-2019,https://doi.org/10.5194/os-15-615-2019, 2019
Short summary
A new roughness length parameterization accounting for wind–wave (mis)alignment
Sara Porchetta, Orkun Temel, Domingo Muñoz-Esparza, Joachim Reuder, Jaak Monbaliu, Jeroen van Beeck, and Nicole van Lipzig
Atmos. Chem. Phys., 19, 6681–6700, https://doi.org/10.5194/acp-19-6681-2019,https://doi.org/10.5194/acp-19-6681-2019, 2019
Short summary
Related subject area  
Discipline: Snow | Subject: Antarctic
Observation of the process of snow accumulation on the Antarctic Plateau by time lapse laser scanning
Ghislain Picard, Laurent Arnaud, Romain Caneill, Eric Lefebvre, and Maxim Lamare
The Cryosphere, 13, 1983–1999, https://doi.org/10.5194/tc-13-1983-2019,https://doi.org/10.5194/tc-13-1983-2019, 2019
Short summary
Intrusion, retention, and snowpack chemical effects from exhaust emissions at Concordia Station, Antarctica
Detlev Helmig, Daniel Liptzin, Jacques Hueber, and Joel Savarino
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-182,https://doi.org/10.5194/tc-2018-182, 2018
Revised manuscript accepted for TC
Short summary
Investigation of a wind-packing event in Queen Maud Land, Antarctica
Christian Gabriel Sommer, Nander Wever, Charles Fierz, and Michael Lehning
The Cryosphere, 12, 2923–2939, https://doi.org/10.5194/tc-12-2923-2018,https://doi.org/10.5194/tc-12-2923-2018, 2018
Short summary
Archival processes of the water stable isotope signal in East Antarctic ice cores
Mathieu Casado, Amaelle Landais, Ghislain Picard, Thomas Münch, Thomas Laepple, Barbara Stenni, Giuliano Dreossi, Alexey Ekaykin, Laurent Arnaud, Christophe Genthon, Alexandra Touzeau, Valerie Masson-Delmotte, and Jean Jouzel
The Cryosphere, 12, 1745–1766, https://doi.org/10.5194/tc-12-1745-2018,https://doi.org/10.5194/tc-12-1745-2018, 2018
Short summary
Cited articles  
Arthern, R. J., Winebrenner, D. P., and Vaughan, D. G.: Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength microwave emission, J. Geophys. Res.-Atmos., 111, D06107, https://doi.org/10.1029/2004JD005667, 2006. a
Berne, A., Grazioli, J., and Genthon, C.: Snowfall rate estimates derived from a micro rain radar (MRR) at the Dumont d'Urville station, Adelie Land, East Antarctica, link to netCDF file, PANGAEA, https://doi.org/10.1594/PANGAEA.882565, 2017. a
Boening, C., Lebsock, M., Landerer, F., and Stephens, G.: Snowfall-driven mass change on the East Antarctic Ice Sheet, Geophys. Res. Lett., 39, L21501, https://doi.org/10.1029/2012GL053316, 2012. a
Bromwich, D. H.: Snowfall in high southern latitudes, Rev. Geophys., 26, 149–168, 1988. a, b
Chen, S., Hong, Y., Kulie, M., Behrangi, A., Stepanian, P. M., Cao, Q., You, Y., Zhang, J., Hu, J., and Zhang, X.: Comparison of snowfall estimates from the NASA CloudSat cloud profiling radar and NOAA/NSSL multi-radar multi-sensor system, J. Hydrol., 541, 862–872, 2016. a
Publications Copernicus
Download
Short summary
Evaluation of the vertical precipitation rate profiles of CloudSat radar by comparison with two surface-based micro-rain radars (MRR) located at two antarctic stations gives a near-perfect correlation between both datasets, even though climatic and geographic conditions are different for the stations. A better understanding and reassessment of CloudSat uncertainties ranging from −13 % up to +22 % confirms the robustness of the CloudSat retrievals of snowfall over Antarctica.
Evaluation of the vertical precipitation rate profiles of CloudSat radar by comparison with two...
Citation