Articles | Volume 14, issue 1
https://doi.org/10.5194/tc-14-93-2020
https://doi.org/10.5194/tc-14-93-2020
Research article
 | 
16 Jan 2020
Research article |  | 16 Jan 2020

Feature-based comparison of sea ice deformation in lead-permitting sea ice simulations

Nils Hutter and Martin Losch

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (31 Oct 2019) by Jennifer Hutchings
AR by Nils Hutter on behalf of the Authors (15 Nov 2019)  Author's response    Manuscript
ED: Publish as is (22 Nov 2019) by Jennifer Hutchings
Download
Short summary
Sea ice is composed of a multitude of floes that constantly deform due to wind and ocean currents and thereby form leads and pressure ridges. These features are visible in the ice as stripes of open-ocean or high-piled ice. High-resolution sea ice models start to resolve these deformation features. In this paper we present two simulations that agree with satellite data according to a new evaluation metric that detects deformation features and compares their spatial and temporal characteristics.