Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.524 IF 4.524
  • IF 5-year value: 5.558 IF 5-year
    5.558
  • CiteScore value: 4.84 CiteScore
    4.84
  • SNIP value: 1.425 SNIP 1.425
  • SJR value: 3.034 SJR 3.034
  • IPP value: 4.65 IPP 4.65
  • h5-index value: 52 h5-index 52
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 55 Scimago H
    index 55
Volume 7, issue 2
The Cryosphere, 7, 569-582, 2013
https://doi.org/10.5194/tc-7-569-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 7, 569-582, 2013
https://doi.org/10.5194/tc-7-569-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 03 Apr 2013

Research article | 03 Apr 2013

Balanced conditions or slight mass gain of glaciers in the Lahaul and Spiti region (northern India, Himalaya) during the nineties preceded recent mass loss

C. Vincent1, Al. Ramanathan2, P. Wagnon7,3, D. P. Dobhal4, A. Linda2, E. Berthier5, P. Sharma6, Y. Arnaud3, M. F. Azam2,3, P. G. Jose2, and J. Gardelle1 C. Vincent et al.
  • 1UJF – Grenoble1 / CNRS, Laboratoire de Glaciologie et Géophysique de l´ Environnement (LGGE) UMR 5183, Grenoble, 38041, France
  • 2School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
  • 3IRD / UJF – Grenoble 1 / CNRS / G-INP, LGGE UMR 5183, LTHE UMR 5564, Grenoble, 38402, France
  • 4Wadia Institute of Himalayan Geology, Dehra Dun 248 001, India
  • 5CNRS, Université de Toulouse, LEGOS, 14 av. Ed. Belin Toulouse 31400 France
  • 6National Centre for Antarctic and Ocean Research, Headland Sada, Goa 403804, India
  • 7ICIMOD, GPO Box 3226, Kathmandu, Nepal

Abstract. The volume change of the Chhota Shigri Glacier (India, 32° 20 N, 77° 30' E) between 1988 and 2010 has been determined using in situ geodetic measurements. This glacier has experienced only a slight mass loss between 1988 and 2010 (−3.8 ± 2.0 m w.e. (water equivalent) corresponding to −0.17 ± 0.09 m w.e. yr−1). Using satellite digital elevation models (DEM) differencing and field measurements, we measure a negative mass balance (MB) between 1999 and 2010 (−4.8 ± 1.8 m w.e. corresponding to −0.44 ± 0.16 m w.e. yr−1). Thus, we deduce a slightly positive or near-zero MB between 1988 and 1999 (+1.0 ± 2.7 m w.e. corresponding to +0.09 ± 0.24 m w.e. yr−1). Furthermore, satellite DEM differencing reveals that the MB of the Chhota Shigri Glacier (−0.39 ± 0.15 m w.e. yr−1) has been only slightly less negative than the MB of a 2110 km2 glaciarized area in the Lahaul and Spiti region (−0.44 ± 0.09 m w.e. yr−1) during 1999−2011. Hence, we conclude that the ice wastage is probably moderate in this region over the last 22 yr, with near equilibrium conditions during the nineties, and an ice mass loss after. The turning point from balanced to negative mass budget is not known but lies probably in the late nineties and at the latest in 1999. This positive or near-zero MB for Chhota Shigri Glacier (and probably for the surrounding glaciers of the Lahaul and Spiti region) during at least part of the 1990s contrasts with a recent compilation of MB data in the Himalayan range that indicated ice wastage since 1975. However, in agreement with this compilation, we confirm more negative balances since the beginning of the 21st century.

Publications Copernicus
Download
Citation
Share