Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.524 IF 4.524
  • IF 5-year value: 5.558 IF 5-year 5.558
  • CiteScore value: 4.84 CiteScore 4.84
  • SNIP value: 1.425 SNIP 1.425
  • SJR value: 3.034 SJR 3.034
  • IPP value: 4.65 IPP 4.65
  • h5-index value: 52 h5-index 52
  • Scimago H index value: 55 Scimago H index 55
Volume 8, issue 6
The Cryosphere, 8, 2275-2291, 2014
https://doi.org/10.5194/tc-8-2275-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 8, 2275-2291, 2014
https://doi.org/10.5194/tc-8-2275-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 10 Dec 2014

Research article | 10 Dec 2014

Glacier topography and elevation changes derived from Pléiades sub-meter stereo images

E. Berthier1, C. Vincent2, E. Magnússon3, Á. Þ. Gunnlaugsson3, P. Pitte4, E. Le Meur2, M. Masiokas4, L. Ruiz4, F. Pálsson3, J. M. C. Belart3, and P. Wagnon5,6 E. Berthier et al.
  • 1Laboratoire d'Etudes en Géophysique et Océanographie Spatiales, Centre National de la Recherche Scientifique (LEGOS – CNRS, UMR5566), Université de Toulouse, 31400 Toulouse, France
  • 2UJF – Grenoble1/CNRS, LGGE – UMR5183, 38041 Grenoble, France
  • 3Institute of Earth Sciences, University of Iceland, Askja, Sturlugata 7, Reykjavik, Iceland
  • 4Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CCT – CONICET Mendoza, C.C. 330, 5500 Mendoza, Argentina
  • 5IRD/Univ. Grenoble Alpes/CNRS/INPG, Laboratoire d'étude des Transferts en Hydrologie et Environnement, LTHE – UMR5564, Laboratoire de Glaciologie et de Géophysique de l'Environnement, LGGE – UMR5183, 38041 Grenoble, France
  • 6ICIMOD, G.P.O. Box 3226, Kathmandu, Nepal

Abstract. In response to climate change, most glaciers are losing mass and hence contribute to sea-level rise. Repeated and accurate mapping of their surface topography is required to estimate their mass balance and to extrapolate/calibrate sparse field glaciological measurements. In this study we evaluate the potential of sub-meter stereo imagery from the recently launched Pléiades satellites to derive digital elevation models (DEMs) of glaciers and their elevation changes. Our five evaluation sites, where nearly simultaneous field measurements were collected, are located in Iceland, the European Alps, the central Andes, Nepal and Antarctica. For Iceland, the Pléiades DEM is also compared to a lidar DEM. The vertical biases of the Pléiades DEMs are less than 1 m if ground control points (GCPs) are used, but reach up to 7 m without GCPs. Even without GCPs, vertical biases can be reduced to a few decimetres by horizontal and vertical co-registration of the DEMs to reference altimetric data on ice-free terrain. Around these biases, the vertical precision of the Pléiades DEMs is ±1 m and even ±0.5 m on the flat glacier tongues (1σ confidence level). Similar precision levels are obtained in the accumulation areas of glaciers and in Antarctica. We also demonstrate the high potential of Pléiades DEMs for measuring seasonal, annual and multi-annual elevation changes with an accuracy of 1 m or better if cloud-free images are available. The negative region-wide mass balances of glaciers in the Mont-Blanc area (−1.04 ± 0.23 m a−1 water equivalent, w.e.) are revealed by differencing Satellite pour l'Observation de la Terre 5 (SPOT 5) and Pléiades DEMs acquired in August 2003 and 2012, confirming the accelerated glacial wastage in the European Alps.

Publications Copernicus
Download
Short summary
We evaluate the potential of Pléiades sub-meter satellite stereo imagery to derive digital elevation models (DEMs) of glaciers and their elevation changes. The vertical precision of the DEMs is ±1 m, even ±0.5m on the flat glacier tongues. Similar precision levels are obtained in accumulation areas. Comparison of a Pléiades DEM with a SPOT5 DEM reveals the strongly negative region-wide mass balances of glaciers in the Mont Blanc area (-1.04±0.23m at 1 water equivalent) during 2003-2012.
We evaluate the potential of Pléiades sub-meter satellite stereo imagery to derive digital...
Citation
Share