Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.790 IF 4.790
  • IF 5-year value: 5.921 IF 5-year
    5.921
  • CiteScore value: 5.27 CiteScore
    5.27
  • SNIP value: 1.551 SNIP 1.551
  • IPP value: 5.08 IPP 5.08
  • SJR value: 3.016 SJR 3.016
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 63 Scimago H
    index 63
  • h5-index value: 51 h5-index 51
Volume 9, issue 3
The Cryosphere, 9, 1303–1319, 2015
https://doi.org/10.5194/tc-9-1303-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 9, 1303–1319, 2015
https://doi.org/10.5194/tc-9-1303-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 23 Jun 2015

Research article | 23 Jun 2015

A ground temperature map of the North Atlantic permafrost region based on remote sensing and reanalysis data

S. Westermann et al.
Related authors  
Permafrost distribution in steep rock slopes in Norway: measurements, statistical modelling and implications for geomorphological processes
Florence Magnin, Bernd Etzelmüller, Sebastian Westermann, Ketil Isaksen, Paula Hilger, and Reginald L. Hermanns
Earth Surf. Dynam., 7, 1019–1040, https://doi.org/10.5194/esurf-7-1019-2019,https://doi.org/10.5194/esurf-7-1019-2019, 2019
Short summary
Projecting Circum-Arctic Excess Ground Ice Melt with a sub-grid representation in the Community Land Model
Lei Cai, Hanna Lee, Sebastian Westermann, and Kjetil Schanke Aas
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-230,https://doi.org/10.5194/tc-2019-230, 2019
Manuscript under review for TC
Short summary
Pan-Antarctic map of near-surface permafrost temperatures at 1 km2 scale
Jaroslav Obu, Sebastian Westermann, Gonçalo Vieira, Andrey Abramov, Megan Balks, Annett Bartsch, Filip Hrbáček, Andreas Kääb, and Miguel Ramos
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-148,https://doi.org/10.5194/tc-2019-148, 2019
Revised manuscript under review for TC
Short summary
Hyper-resolution ensemble-based snow reanalysis in mountain regions using clustering
Joel Fiddes, Kristoffer Aalstad, and Sebastian Westermann
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-37,https://doi.org/10.5194/hess-2019-37, 2019
Revised manuscript accepted for HESS
Short summary
Pathways of ice-wedge degradation in polygonal tundra under different hydrological conditions
Jan Nitzbon, Moritz Langer, Sebastian Westermann, Léo Martin, Kjetil Schanke Aas, and Julia Boike
The Cryosphere, 13, 1089–1123, https://doi.org/10.5194/tc-13-1089-2019,https://doi.org/10.5194/tc-13-1089-2019, 2019
Short summary
Related subject area  
Frozen Ground
Mountain permafrost degradation documented through a network of permanent electrical resistivity tomography sites
Coline Mollaret, Christin Hilbich, Cécile Pellet, Adrian Flores-Orozco, Reynald Delaloye, and Christian Hauck
The Cryosphere, 13, 2557–2578, https://doi.org/10.5194/tc-13-2557-2019,https://doi.org/10.5194/tc-13-2557-2019, 2019
Short summary
Permafrost variability over the Northern Hemisphere based on the MERRA-2 reanalysis
Jing Tao, Randal D. Koster, Rolf H. Reichle, Barton A. Forman, Yuan Xue, Richard H. Chen, and Mahta Moghaddam
The Cryosphere, 13, 2087–2110, https://doi.org/10.5194/tc-13-2087-2019,https://doi.org/10.5194/tc-13-2087-2019, 2019
Short summary
Distinguishing ice-rich and ice-poor permafrost to map ground temperatures and ground ice occurrence in the Swiss Alps
Robert Kenner, Jeannette Noetzli, Martin Hoelzle, Hugo Raetzo, and Marcia Phillips
The Cryosphere, 13, 1925–1941, https://doi.org/10.5194/tc-13-1925-2019,https://doi.org/10.5194/tc-13-1925-2019, 2019
Short summary
Pingo development in Grøndalen, West Spitsbergen
Nikita Demidov, Sebastian Wetterich, Sergey Verkulich, Aleksey Ekaykin, Hanno Meyer, Mikhail Anisimov, Lutz Schirmeister, Vasily Demidov, and Andrew J. Hodson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-76,https://doi.org/10.5194/tc-2019-76, 2019
Revised manuscript accepted for TC
Short summary
New ground ice maps for Canada using a paleogeographic modelling approach
H. Brendan O'Neill, Stephen A. Wolfe, and Caroline Duchesne
The Cryosphere, 13, 753–773, https://doi.org/10.5194/tc-13-753-2019,https://doi.org/10.5194/tc-13-753-2019, 2019
Short summary
Cited articles  
Aas, K. S., Berntsen, T. K., Boike, J., Etzelmüller, B., Kristjánsson, J. E., Maturilli, M., Schuler, T. V., Stordal, F., and Westermann, S.: A comparison between simulated and observed surface energy balance at the Svalbard archipelago, J. Appl. Meteorol. Climatol., 54, 1102–1119, https://doi.org/10.1175/JAMC-D-14-0080.1, 2015.
Baranov, I. Y.: Geographical distribution of seasonally frozen ground and permafrost, in: General Geocryology, 193–219, Part I, Chap. 7, V. A. Obruchev Institute of Permafrost Studies, USSR Academy of Sciences, Moscow, 1959.
Brown, J., Ferrians Jr., O., Heginbottom, J., and Melnikov, E.: Circum-Arctic map of permafrost and ground-ice conditions, US Geological Survey Circum-Pacific Map, US Geological Survey, Washington, D.C., USA, 1997.
Daanen, R. P., Ingeman-Nielsen, T., Marchenko, S. S., Romanovsky, V. E., Foged, N., Stendel, M., Christensen, J. H., and Hornbech Svendsen, K.: Permafrost degradation risk zone assessment using simulation models, The Cryosphere, 5, 1043–1056, https://doi.org/10.5194/tc-5-1043-2011, 2011.
Publications Copernicus
Download
Short summary
We use remotely sensed land surface temperature and land cover in conjunction with air temperature and snowfall from a reanalysis product as input for a simple permafrost model. The scheme is applied to the permafrost regions bordering the North Atlantic. A comparison with ground temperatures in boreholes suggests a modeling accuracy of 2 to 2.5 °C.
We use remotely sensed land surface temperature and land cover in conjunction with air...
Citation