Journal metrics

Journal metrics

  • IF value: 4.524 IF 4.524
  • IF 5-year value: 5.558 IF 5-year 5.558
  • CiteScore value: 4.84 CiteScore 4.84
  • SNIP value: 1.425 SNIP 1.425
  • SJR value: 3.034 SJR 3.034
  • IPP value: 4.65 IPP 4.65
  • h5-index value: 52 h5-index 52
  • Scimago H index value: 55 Scimago H index 55
Volume 9, issue 6 | Copyright

Special issue: Interactions between climate change and the Cryosphere: SVALI,...

The Cryosphere, 9, 2163-2181, 2015
https://doi.org/10.5194/tc-9-2163-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 18 Nov 2015

Research article | 18 Nov 2015

Changing surface–atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland

C. Charalampidis et al.
Related authors
On the reflectance spectroscopy of snow
Alexander Kokhanovsky, Maxim Lamare, Biagio Di Mauro, Ghislain Picard, Laurent Arnaud, Marie Dumont, François Tuzet, Carsten Brockmann, and Jason E. Box
The Cryosphere, 12, 2371-2382, https://doi.org/10.5194/tc-12-2371-2018,https://doi.org/10.5194/tc-12-2371-2018, 2018
Seasonal monitoring of melt and accumulation within the deep percolation zone of the Greenland Ice Sheet and comparison with simulations of regional climate modeling
Achim Heilig, Olaf Eisen, Michael MacFerrin, Marco Tedesco, and Xavier Fettweis
The Cryosphere, 12, 1851-1866, https://doi.org/10.5194/tc-12-1851-2018,https://doi.org/10.5194/tc-12-1851-2018, 2018
Exploration of Antarctic Ice Sheet 100-year contribution to sea level rise and associated model uncertainties using the ISSM framework
Nicole-Jeanne Schlegel, Helene Seroussi, Michael P. Schodlok, Eric Y. Larour, Carmen Boening, Daniel Limonadi, Michael M. Watkins, Mathieu Morlighem, and Michiel R. van den Broeke
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-105,https://doi.org/10.5194/tc-2018-105, 2018
Manuscript under review for TC
Brief communication: Improved simulation of the present-day Greenland firn layer (1960–2016)
Stefan R. M. Ligtenberg, Peter Kuipers Munneke, Brice P. Y. Noël, and Michiel R. van den Broeke
The Cryosphere, 12, 1643-1649, https://doi.org/10.5194/tc-12-1643-2018,https://doi.org/10.5194/tc-12-1643-2018, 2018
Simulating ice thickness and velocity evolution of Upernavik Isstrøm 1849–2012 by forcing prescribed terminus positions in ISSM
Konstanze Haubner, Jason E. Box, Nicole J. Schlegel, Eric Y. Larour, Mathieu Morlighem, Anne M. Solgaard, Kristian K. Kjeldsen, Signe H. Larsen, Eric Rignot, Todd K. Dupont, and Kurt H. Kjær
The Cryosphere, 12, 1511-1522, https://doi.org/10.5194/tc-12-1511-2018,https://doi.org/10.5194/tc-12-1511-2018, 2018
Related subject area
Energy Balance Obs/Modelling
Glacio-hydrological melt and run-off modelling: application of a limits of acceptability framework for model comparison and selection
Jonathan D. Mackay, Nicholas E. Barrand, David M. Hannah, Stefan Krause, Christopher R. Jackson, Jez Everest, and Guðfinna Aðalgeirsdóttir
The Cryosphere, 12, 2175-2210, https://doi.org/10.5194/tc-12-2175-2018,https://doi.org/10.5194/tc-12-2175-2018, 2018
Sunlight, clouds, sea ice, albedo, and the radiative budget: the umbrella versus the blanket
Donald K. Perovich
The Cryosphere, 12, 2159-2165, https://doi.org/10.5194/tc-12-2159-2018,https://doi.org/10.5194/tc-12-2159-2018, 2018
Forcing the SURFEX/Crocus snow model with combined hourly meteorological forecasts and gridded observations in southern Norway
Hanneke Luijting, Dagrun Vikhamar-Schuler, Trygve Aspelien, Åsmund Bakketun, and Mariken Homleid
The Cryosphere, 12, 2123-2145, https://doi.org/10.5194/tc-12-2123-2018,https://doi.org/10.5194/tc-12-2123-2018, 2018
Observations and simulations of the seasonal evolution of snowpack cold content and its relation to snowmelt and the snowpack energy budget
Keith S. Jennings, Timothy G. F. Kittel, and Noah P. Molotch
The Cryosphere, 12, 1595-1614, https://doi.org/10.5194/tc-12-1595-2018,https://doi.org/10.5194/tc-12-1595-2018, 2018
Effects of short-term variability of meteorological variables on soil temperature in permafrost regions
Christian Beer, Philipp Porada, Altug Ekici, and Matthias Brakebusch
The Cryosphere, 12, 741-757, https://doi.org/10.5194/tc-12-741-2018,https://doi.org/10.5194/tc-12-741-2018, 2018
Cited articles
Ahlstrøm, A. P., and the PROMICE project team: A new programme for monitoring the mass loss of the Greenland ice sheet, Geol. Surv. Denmark Greenland Bull., 15, 61–64, 2008.
Ambach, W.: The influence of cloudiness on the net radiation balance of a snow surface with high albedo, J. Glaciol., 13, 73–84, 1974.
Andreas, E. L.: A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice, Bound.-Lay. Meteorol., 38, 159–184, https://doi.org/10.1007/BF00121562, 1987.
Bamber, J. L., Griggs, J. A., Hurkmans, R. T. W. L., Dowdeswell, J. A., Gogineni, S. P., Howat, I., Mouginot, J., Paden, J., Palmer, S., Rignot, E., and Steinhage, D.: A new bed elevation dataset for Greenland, The Cryosphere, 7, 499–510, https://doi.org/10.5194/tc-7-499-2013, 2013.
Bennartz, R., Shupe, M. D., Turner, D. D., Walden, V. P., Steffen, K., Cox, C. J., Kulie, M. S., Miller, N. B., and Pettersen, C.: July 2012 Greenland melt extent enhanced by low-level liquid clouds, Nature, 496, 83–86, https://doi.org/10.1038/Nature12002, 2013.
Publications Copernicus
Special issue
Download
Citation
Share