Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 5.516 IF 5.516
  • IF 5-year<br/> value: 5.591 IF 5-year
  • SNIP value: 1.403 SNIP 1.403
  • IPP value: 4.288 IPP 4.288
  • SJR value: 3.247 SJR 3.247
  • h5-index value: 34 h5-index 34
TC cover
Jonathan L.
G. Hilmar
van den Broeke

The Cryosphere (TC) is an international scientific journal dedicated to the publication and discussion of research articles, short communications, and review papers on all aspects of frozen water and ground on Earth and on other planetary bodies.

The main subject areas are ice sheets and glaciers, planetary ice bodies, permafrost, river and lake ice, seasonal snow cover, sea ice, remote sensing, numerical modelling, in situ and laboratory studies of the above and including studies of the interaction of the cryosphere with the rest of the climate system.


Most comprehensive projections for West Antarctica’s future revealed

20 Aug 2015

A new international study is the first to use a high-resolution, large-scale computer model to estimate how much ice the West Antarctic Ice Sheet could lose over the next couple of centuries.

Direct settlement of APCs for scientists from the University of Potsdam

01 Jul 2015

The Potsdam University Library and Copernicus Publications have signed an agreement on direct settlement of article processing charges (APCs).

Update data policy

29 Jun 2015

We have updated our data policy: it now also refers to the Data Citation Principles and stresses the necessity of data availability.

TC awarded DOAJ Seal

25 Jun 2015

The Cryosphere (TC) has received the new DOAJ Seal which recognizes journals with an exceptionally high level of publishing standards and best practice.

Recent articles

Highlight articles

In this paper we use a global land-surface model to study the dynamics of Arctic permafrost. We examine the impact of new and improved processes in the model, namely soil depth and resolution, organic soils, moss and the representation of snow. These improvements make the simulated soil temperatures and thaw depth significantly more realistic. Simulations under future climate scenarios show that permafrost thaws more slowly in the new model version, but still a large amount is lost by 2100.

S. E. Chadburn, E. J. Burke, R. L. E. Essery, J. Boike, M. Langer, M. Heikenfeld, P. M. Cox, and P. Friedlingstein

This paper presents a photogrammetric method for measuring topography from manned aircraft with an accuracy of 30 cm and repeatability of 8 cm, at significantly lower cost than other methods. Here we created difference maps to demonstrate that we could measure snow depth with an accuracy of 10 cm compared to over 6000 snow-probe measurements on the ground, but do so over entire watersheds at 10-20 cm spatial resolution rather than just a few transects.

M. Nolan, C. Larsen, and M. Sturm

We use remotely sensed land surface temperature and land cover in conjunction with air temperature and snowfall from a reanalysis product as input for a simple permafrost model. The scheme is applied to the permafrost regions bordering the North Atlantic. A comparison with ground temperatures in boreholes suggests a modeling accuracy of 2 to 2.5 °C.

S. Westermann, T. I. Østby, K. Gisnås, T. V. Schuler, and B. Etzelmüller

Within the last year, a large rift in the southern part of the Larsen C Ice Shelf, Antarctic Peninsula, propagated towards the inner part of the ice shelf. In this study we present the development of the rift as derived from remote sensing data and assess the impact of possible calving scenarios on the future stability of the Larsen C Ice Shelf, using a numerical model. We find that the calving front is likely to become unstable after the anticipated calving events.

D. Jansen, A. J. Luckman, A. Cook, S. Bevan, B. Kulessa, B. Hubbard, and P. R. Holland

Snow and ice provide large amounts of meltwater to the Indus, Ganges and Brahmaputra rivers. In this study we show that climate change will reduce the amount of snow falling in the Himalayas, Hindu Kush and Karakoram substantially. The limited number of observations in remote upper-level terrain makes it difficult to get a complete overview of the situation today, but our results indicate that by 2071–2100 snowfall may be reduced by 30–70% with the strongest anthropogenic forcing scenario.

E. Viste and A. Sorteberg

Publications Copernicus