Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 4.374 IF 4.374
  • IF 5-year<br/> value: 4.684 IF 5-year
    4.684
  • SNIP value: 1.403 SNIP 1.403
  • IPP value: 4.288 IPP 4.288
  • SJR value: 3.247 SJR 3.247
  • h5-index value: 34 h5-index 34
TC cover
Co-editors-in-chief:
Jonathan L.
 
Bamber
,
Florent
 
Dominé
,
Stephan
 
Gruber
,
G. Hilmar
 
Gudmundsson
 &
Michiel
 
van den Broeke

The Cryosphere (TC) is an international scientific journal dedicated to the publication and discussion of research articles, short communications, and review papers on all aspects of frozen water and ground on Earth and on other planetary bodies.

The main subject areas are ice sheets and glaciers, planetary ice bodies, permafrost, river and lake ice, seasonal snow cover, sea ice, remote sensing, numerical modelling, in situ and laboratory studies of the above and including studies of the interaction of the cryosphere with the rest of the climate system.

News

Website relaunch

11 Mar 2015

The TC website has been given a new look, and the navigation has been adjusted.
Further details:

TU Delft and Copernicus Publications cooperate in supporting open access

22 Jan 2015

In order to further promote open access, the TU Delft Library has transferred a budget to Copernicus to be used by its scientists in 2015.

Central billing of APCs for TUM authors

18 Dec 2014

Copernicus Publications and the University Library of the Technical University Munich (TUM) have agreed on central billing of article processing charges.

Recent articles


Highlight articles

We present a new method to compute sea ice deformation fields from satellite-derived motion. The method particularly reduces the artificial noise that arises along discontinuities in the sea ice motion field. We estimate that this artificial noise may cause an overestimation of about 60% of sea ice opening and closing. The constant overestimation of the opening and closing could have led in previous studies to a large overestimation of freezing in leads, salt rejection and sea ice ridging.

S. Bouillon and P. Rampal

Ice discharge into the ocean from outlet glaciers is an important component of mass loss of the Greenland ice sheet. Here, we present a simple parameterization of ice discharge for coarse resolution ice sheet models, suitable for large ensembles or long-term palaeo simulations. This parameterization reproduces in a good approximation the present-day ice discharge compared with estimates, and the simulation of the present-day ice sheet elevation is considerably improved.

R. Calov, A. Robinson, M. Perrette, and A. Ganopolski

Existing methods (area-volume relations, a slope-dependent volume estimation method, and two ice-thickness distribution models) are used to estimate the ice reserves stored in Himalayan-Karakoram glaciers. Resulting volumes range from 2955–4737 km³. Results from the ice-thickness distribution models agree well with local measurements; volume estimates from area-related relations exceed the estimates from the other approaches. Evidence on the effect of the selected method on results is provided.

H. Frey, H. Machguth, M. Huss, C. Huggel, S. Bajracharya, T. Bolch, A. Kulkarni, A. Linsbauer, N. Salzmann, and M. Stoffel

This study of one of the most rapidly changing glacier regions on Earth – the Antarctic Peninsula – uses two types of satellite data to measure the rates of ice loss in detail for the individual glaciers. The satellite data is laser altimetry from ICESat and stereo image DEM differences. The results show that 24..9 ± 7.8 billion tons of ice are lost from the region north of 66°S on the Peninsula each year. The majority of the data cover 2003-2008.

T. A. Scambos, E. Berthier, T. Haran, C. A. Shuman, A. J. Cook, S. R. M. Ligtenberg, and J. Bohlander

Publications Copernicus