Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
TC cover
Co-editors-in-chief:
Florent
 
Dominé
,
Olaf
 
Eisen
,
G. Hilmar
 
Gudmundsson
,
Christian
 
Hauck
 &
Thomas
 
Mölg

The Cryosphere (TC) is an international scientific journal dedicated to the publication and discussion of research articles, short communications, and review papers on all aspects of frozen water and ground on Earth and on other planetary bodies.

The main subject areas are ice sheets and glaciers, planetary ice bodies, permafrost, river and lake ice, seasonal snow cover, sea ice, remote sensing, numerical modelling, in situ and laboratory studies of the above and including studies of the interaction of the cryosphere with the rest of the climate system.

News

Farewell to Stephan Gruber and Welcome Christian Hauck

13 Nov 2017

As of November 2017, Stephan Gruber, one of our first editors, will retire from his position as co-editor-in-chief. At the same time, we are delighted to welcome Christian Hauck as a new co-editor-in-chief.

New institutional agreement between the PIK and Copernicus Publications

24 Aug 2017

Authors from the Potsdam Institute for Climate Impact Research (PIK) will profit from a new institutional agreement with Copernicus Publications starting 23 August 2017. The agreement which is valid for the first author enables a direct settlement of article processing charges (APCs) between the PIK and the publisher.

Update of publication policy

04 Jul 2017

The updated publication policy now is extended by the journal's open access statement, its archiving and indexing scheme, and explicit policies on corrections and retractions.

Recent articles


Highlight articles

Light-absorbing impurities deposited on snow, such as soot or dust, strongly modify its evolution. We implemented impurity deposition and evolution in a detailed snowpack model, thereby expanding the reach of such models into addressing the subtle interplays between snow physics and impurities' optical properties. Model results were evaluated based on innovative field observations at an Alpine site. This allows future investigations in the fields of climate, hydrology and avalanche prediction.

Francois Tuzet, Marie Dumont, Matthieu Lafaysse, Ghislain Picard, Laurent Arnaud, Didier Voisin, Yves Lejeune, Luc Charrois, Pierre Nabat, and Samuel Morin

In this CESM modeling study, we uncover regional relationships in snowfall across Antarctica that are corroborated by regional modeling and ice core records. These relationships are driven by variability in large-scale atmospheric moisture transport and dampen overall Antarctic snowfall variability, with implications for Antarctic-sourced sea level variability and detection of an emergent anthropogenic signal in Antarctic mass trends.

Jeremy Fyke, Jan T. M. Lenaerts, and Hailong Wang

We combine a synthesis of 22 ice core records and a model of soluble impurity transport to investigate the enigmatic, post-depositional migration of methanesulfonic acid in polar ice. Our findings suggest that migration may be universal across coastal regions of Greenland and Antarctica, though it is mitigated at sites with higher accumulation and (or) lower impurity content. Records exhibiting severe migration may still be useful for inferring decadal and lower-frequency climate variability.

Matthew Osman, Sarah B. Das, Olivier Marchal, and Matthew J. Evans

The oldest dated deep ice core drilled in Antarctica has been retrieved at EPICA Dome C (EDC), reaching ~ 800 000 years. Obtaining an older palaeoclimatic record from Antarctica is one of the greatest challenges of the ice core community. Here, we estimate the age of basal ice in the Dome C area. We find that old ice (> 1.5 Myr) likely exists in two regions a few tens of kilometres away from EDC: "Little Dome C Patch" and "North Patch".

Frédéric Parrenin, Marie G. P. Cavitte, Donald D. Blankenship, Jérôme Chappellaz, Hubertus Fischer, Olivier Gagliardini, Valérie Masson-Delmotte, Olivier Passalacqua, Catherine Ritz, Jason Roberts, Martin J. Siegert, and Duncan A. Young

We show mathematically and computationally how discharge of ice from ocean-terminating glaciers is controlled by a combination of different forces acting on ice near the grounding line of a glacier and how that combination of forces is affected by the process of iceberg formation, which limits the length of floating ice tongues extending in front of the glacier. We show that a deeper fjord may lead to a longer ice tongue providing greater drag on the glacier, slowing the rate of ice discharge.

Christian Schoof, Andrew D. Davis, and Tiberiu V. Popa

Publications Copernicus